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Abstract Artificial Intelligence for IT Operations (AIOps) leverages AI ap-
proaches to handle the massive amount of data generated during the operations
of software systems. Prior works have proposed various AIOps solutions to sup-
port different tasks in system operations and maintenance, such as anomaly
detection. In this study, we conduct an in-depth analysis of open-source AIOps
projects to understand the characteristics of AIOps in practice. We first care-
fully identify a set of AIOps projects from GitHub and analyze their reposi-
tory metrics (e.g., the used programming languages). Then, we qualitatively
examine the projects to understand their input data, analysis techniques, and
goals. Finally, we assess the quality of these projects using different quality
metrics, such as the number of bugs. To provide context, we also sample two
sets of baseline projects from GitHub: a random sample of machine learning
projects and a random sample of general-purposed projects. By comparing
different metrics between our identified AIOps projects and these baselines,
we derive meaningful insights. Our results reveal a recent and growing interest
in AIOps solutions. However, the quality metrics indicate that AIOps projects
suffer from more issues than our baseline projects. We also pinpoint the most
common issues in AIOps approaches and discuss potential solutions to ad-
dress these challenges. Our findings offer valuable guidance to researchers and
practitioners, enabling them to comprehend the current state of AIOps prac-
tices and shed light on different ways of improving AIOps’ weaker aspects. To
the best of our knowledge, this work marks the first attempt to characterize
open-source AIOps projects.
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1 Introduction

With the prevalence of generated data in large-scale systems, monitoring this
data and transforming it into practical insights is becoming a complex chal-
lenge. Artificial Intelligence for IT Operations (AIOps) has been introduced
to cope with this challenge. It combines big data, machine learning (ML) ap-
proaches, and other advanced analysis techniques (e.g., statistical analysis) to
analyze system performance patterns to be able to improve service quality
and reduce operational costs (Dang et al., 2019; Prasad and Rich, 2018). By
utilizing AIOps techniques, organizations are now able to collect and com-
bine different sources of system data and use them to perform various tasks
(e.g., anomaly detection or failure prediction) in their DevOps or operations
environment (Dang et al., 2019; Prasad and Rich, 2018).

A considerable amount of research has been performed on the topic of
AIOps. Prior work has proposed AIOps solutions for various maintenance and
operations tasks, such as predicting node failures (Li et al., 2020b; Lin et al.,
2018), predicting task or job failures (El-Sayed et al., 2017; Gao et al., 2020;
Rosà et al., 2015), anomaly detection (He et al., 2018b; Lim et al., 2014), and
self healing (Ding et al., 2012, 2014). However, no work has systematically
studied AIOps practices in real-world projects (e.g., public GitHub projects).

Studying AIOps practices in real-world projects is important and has sev-
eral benefits, including (1) helping researchers and practitioners understand
the current status of AIOps solutions and the characteristics of AIOps projects;
(2) providing guidance for researchers and practitioners to adopt best-performing
AIOps solutions for their application scenarios; and (3) identifying problems
in AIOps practices and shedding lights on future research opportunities.

Therefore, this work identifies and studies a set of AIOps projects publicly
available on GitHub. We also compare the selected AIOps projects with two
baselines: traditional ML projects and General-purpose projects. Our goal is
to understand the characteristics of these AIOps projects in the context of the
baseline projects. Specifically, we first investigate the overall characteristics of
these AIOps projects in terms of their GitHub metrics (RQ1), then we dig
deeper into the individual projects to understand “what” goals these projects
aim to achieve (RQ2), and finally, we examine how well these goals are achieved
in terms of the code quality of these projects (RQ3). Our research questions
are as follows.

RQ1 What are the characteristics of AIOps projects in terms of
their GitHub metrics? We analyze the GitHub metrics of AIOps and
baseline projects to understand the current status of AIOps projects and
also compare them with baselines in terms of their GitHub metrics, such
as the programming languages and the number of stars. We observe that
AIOps solutions are being developed with a faster growth rate compared to
the baselines. AIOps projects also have a higher distribution of popularity
metrics (e.g., number of stars and forks), and also more pull requests and
issues compared to baselines.
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RQ2 What are the characteristics of AIOps projects in terms of
their input data, analysis techniques, and goals? In order to under-
stand the characteristics of AIOps projects (i.e., their input data, analysis
techniques, and goals), we manually investigate each project. We find that
monitoring data (e.g., logs and performance metrics) is the most used input
data, classical machine learning techniques are the most adopted analysis
techniques, and anomaly detection is the primary goal of many AIOps
projects.

RQ3 What is the code quality of AIOps projects? We further analyze
the source code of AIOps and baseline projects to identify any interesting
patterns related to their quality. We find that AIOps projects have a higher
issue rate, specifically in terms of bugs, code smells, and technical debt,
than the baselines.

We share our replication package on GitHub 1 so that future work can re-
produce or extend our study. Our work makes several important contributions:

1. As the first study on AIOps practices in real-world projects, our work
helps practitioners and researchers understand the status of AIOps from a
practical point of view.

2. Our qualitative analysis of the input data, analysis techniques, and goals
of the AIOps projects can help practitioners and researchers consider and
adopt AIOps solutions that fit into their specific application scenarios.

3. Our work identifies problems in AIOps practices (e.g., code quality) and
sheds light on future research opportunities in AIOps.

The rest of the paper is organized as follows. Section 2 describes the experi-
ment setup of our study, including the collection and preparation of the AIOps
project data used for answering our research questions. Section 3 presents our
approach and results for answering the research questions. Section 4 provides
further discussions of our results. Section 5 discusses the threats to the validity
of our findings. Section 6 summarizes prior research related to our work, and
finally, Section 7 concludes our paper.

2 Experiment Setup

This section describes our approach for collecting the AIOps and baseline
projects. We first present the overview of our study, then describe the steps
for collecting and verifying AIOps and baseline projects, respectively.

2.1 Overview of our study

Figure 1 presents an overview of our approach to study the characteristics of
AIOps projects. We use GitHub as the main source to extract the needed data

1https://github.com/roozbehaghili/studying_aiops_github

https://github.com/roozbehaghili/studying_aiops_github
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Fig. 1: An overview of our study.

for our analysis. As of January 2023, GitHub has over 100 million registered
developers and over 372 million repositories (GitHub, 2023). GitHub is also
considered the largest hosting service for open-source software systems (Li
et al., 2020a). Hence, projects found on GitHub are likely to reflect the diver-
sity of existing AIOps projects. Many existing studies also extract the needed
information for their analysis from GitHub (e.g., Dakhel et al., 2023; Foalem
et al., 2023; Majidi et al., 2022; Openja et al., 2022). We start by search-
ing the projects with the keyword “AIOps”. Then, through manual verification
(e.g., removing non-AIOps projects), keyword expansion (i.e., through pattern
mining), second-round search and manual verification, and threshold-based fil-
tering (e.g., by the number of stars), we collect a total of 119 AIOps projects
that are used to answer our research questions. In order to better understand
the characteristics of AIOps projects in a bigger context, we also compare our
identified AIOps projects with two baselines:

1. randomly sampled machine learning (ML) projects;
2. randomly sampled general projects

We choose the ML baseline because most of the AIOps projects leverage ML
techniques. We choose the General baseline to compare our AIOps projects
with general software applications on GitHub. Finally, we perform qualita-
tive and quantitative analyses on the collected data to answer our research
questions. Below, we describe the details of our data collection. The detailed
approaches for answering our research questions are presented in Section 3.

2.2 Collecting AIOps Projects

Through two rounds of searching AIOps-related keywords on GitHub, we col-
lect a total of 1016 candidate projects. Through filtering and manual verifi-
cation, we end up with 119 of them as our final set of AIOps projects. The
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methodology we use to select these projects follows the systematic approach
recommended by Basili et al. (1986) and is described in the following sections.

2.2.1 Search AIOps projects (first round)

In the initial step of identifying suitable projects, we utilize the GitHub in-
terface to search for repositories specifically labeled as AIOps projects. To do
this, we employ the keyword “AIOps” and search across four key sections of
each repository: the repository name, the “about” section, the “topics” section,
and the contents of the “readme” file. After searching for the keyword “AIOps”,
we find a total of 542 repositories that match our criteria. These 542 reposito-
ries represent all the available projects on GitHub that have been labeled as
AIOps projects.

2.2.2 Manual verification (first round)

Based on existing definitions of AIOps (Dang et al., 2019; Prasad and Rich,
2018), we consider AIOps projects as: any project that uses IT Operations-
related data, utilizes advanced analysis technologies such as machine-learning
or statistical analysis to reach valuable insights or enhance the system’s quality
by actions such as monitoring and automation.

Therefore, not all the 542 discovered repositories are good AIOps candi-
dates and suitable for our study. We hence select our subject projects based
on three criteria:

1. The project should be about AIOps, not similar topics such as Machine
Learning Operations (MLOps)2 or Development and Operations (DevOps)3.
Therefore, we delete the projects that are mainly about other topics.

2. The projects should contain sufficient code. Therefore, we delete the repos-
itories that do not have any code or only contain a few lines of code. We
also delete projects that are a collection of papers, slides, or other reposi-
tories. However, we accept the projects that have created a dataset so that
other developers and researchers can use it in their work.

3. The projects should not be toy projects: we delete the projects that are
homework assignments or university projects.

To select the desirable projects based on the explained criteria, the first
two authors of the paper (i.e., coders) independently perform a coding pro-
cess, adding a YES (AIOps projects) or NO (non-AIOps projects) tag to each
project. We perform the coding process as below.

Step 1: Coding. Each coder studies and analyzes all the 542 repositories
and independently decides if each project should be added to the final list of
projects.

2A set of practices to maintain and deploy machine learning models.
3A set of practices that aim to shorten the system development life cycle while preserving

high quality.
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Step 2: Discussion. The coders share their responses and discuss their
approaches for selecting a project. The discussion session’s goal is to reach the
same understanding of the inclusion criteria among the coders.

Step 3: Revision. Based on the discussion, each coder revises their re-
sponses from step 1.

Step 4: Resolving disagreements. In the last step, the coders discuss
any conflicts that may remain and try to resolve them. If an agreement can not
be reached, the third author would analyze the project and a vote is performed.

After performing the manual verification process, we obtain a total of 99
candidate AIOps projects from the 542 projects derived from the search results,
which corresponds to a selection rate of 18%.

2.2.3 Keyword extraction (pattern mining)

Expanding our search to gain a more comprehensive view of real-world AIOps
projects is necessary as the term “AIOps” was only introduced in 2018 (Prasad
and Rich, 2018). As a result, some projects might have existed prior to the in-
troduction of this terminology, implementing AIOps solutions without explic-
itly using the exact term. To achieve a broader scope, we extend our search to
include additional projects that may not explicitly label themselves as AIOps
repositories but are, in fact, implementing AIOps solutions. To achieve this, we
extract all the topics associated with each of the 99 AIOps projects resulting
from the previous step. These topics can be found in the “topics” section of
each GitHub repository.

We then use frequent pattern mining (Han et al., 2007), a method aimed at
discovering associations and patterns within a given dataset. Specifically, we
utilize the frequent pattern growth technique (Han et al., 2000, 2004) to iden-
tify the most common topics among GitHub repositories. To conduct this anal-
ysis, we set the support parameter to 2, indicating that a pattern should appear
in at least two projects for consideration. Through this approach, we identify
a total of 194 patterns among the topics present in the repositories. Next,
we perform a discussion session involving all three authors to decide which
patterns hold potential for identifying additional AIOps projects. From this
discussion, we narrow down our selection to four pairs of two-item patterns:
“anomaly detection” and “log analysis”, “log analysis” and “machine learning”,
“anomaly detection” and “machine learning”, as well as “machine learning” and
“metrics”. All the selected keyword pairs are among the most frequently used
topics in the projects. We use these four sets of keywords to find more AIOps
repositories.

2.2.4 Search AIOps projects (second round)

Using the four pairs of keywords obtained in the previous step, we conduct
the second round of search on the GitHub interface to identify more projects
related to AIOps. We follow the same process as described in Section 2.2.1. Af-
ter completing this second-round search and removing any duplicated projects



Studying the Characteristics of AIOps Projects on GitHub 7

that were already identified in the first-round search results, we find a total of
474 unique projects.

2.2.5 Filtering

Based on the knowledge that we have gained from our first-round manual
verification, we apply a filtering phase to remove the toy projects. To achieve
this, we employ two filtering criteria based on the number of stars and forks
for each project. Specifically, we only consider projects that have both stars
and forks greater than or equal to 1 (stars: >=1 & forks: >=1). The purpose
of removing toy projects is to have relatively mature projects and not soil
our results with small repositories (Munaiah et al., 2017). Given the limited
number of AIOps projects on GitHub, adding stricter filtering criteria would
result in much fewer projects. Therefore, we choose a low-bar filtering approach
to reduce the manual effort of analyzing all the projects with stars or forks of
0.

We utilize the filtering process for both the projects from the first and
second rounds of searches. In the first round, we manually verify all the projects
before applying the filtering step. This deliberate approach allows us to gain
a comprehensive understanding of the status of the AIOps projects. Following
the filtering process, the initially verified 99 projects are reduced to 55. For
the projects from the second round, we opt to apply the filtering before the
manual verification process. This decision saves unnecessary manual effort by
excluding projects that do not meet the filtering criteria from the beginning.

2.2.6 Manual verification (second round)

As detailed in Section 2.2.2, not all of the repositories obtained from our initial
search are suitable for our study. To carefully select the projects that align with
our research objectives, we carry out a manual verification process, repeating
the steps outlined in Section 2.2.2. During this verification, the coders examine
all 474 projects that resulted from the expanded keyword search to determine
their suitability as real AIOps projects. After steps of separate coding, dis-
cussion, revision, and resolving disagreements, we identify 64 projects from
the expanded keyword search. This corresponds to a selection rate of 14%,
Finally, we combine the 55 projects identified using the “AIOps” keyword with
the 64 projects discovered through the expanded keywords. The final set of
119 AIOps projects is used to answer our research questions. The approaches
for answering our research questions are detailed in Section 3.

2.2.7 Measuring the reliability of our manual verification

Reliability is vital to ensure the validity of the coding results (Artstein and
Poesio, 2008). The coding results are reliable if there exists a certain level
of agreement between the coders, known as inter-coder agreement. In this
study, we use Cohen’s kappa (Cohen, 1960) to measure the reliability of the



8 Roozbeh Aghili et al.

agreements between two coders. Cohen’s kappa is one of the most common ap-
proaches to measuring the inter-coder agreement (Artstein and Poesio, 2008).
Table 1 indicates the relation between the value of Cohen’s kappa and the level
of agreement (McHugh, 2012).

Table 1: Interpretation of Cohen’s kappa.

Value of Cohen’s k Level of Agreement

0-.20 None
.21-.39 Minimal
.40-.59 Weak
.60-.79 Moderate
.80-.90 Strong
.90-1 Almost Perfect

Our manual verification for choosing the proper AIOps projects achieves
a Cohen’s kappa of 0.68 before the discussion session. After the discussion
session between the coders, the kappa score increased to 0.84. As shown in
Table 1, kappa ≥ 0.80 indicates a strong agreement.

2.3 Collecting Baseline Projects

To understand how AIOps projects differ from traditional software projects,
we create two baselines and compare the AIOps projects with them. We select
Machine Learning (ML) projects as our first baseline and General projects as
our second baseline.

2.3.1 Machine Learning projects

For our initial baseline, we choose ML projects. We select ML for the first
baseline because AIOps can be considered as an application domain of machine
learning. In similar studies, researchers typically search for specific frameworks
to gather ML projects on GitHub. For example, (Zhang et al., 2018) select
their project set by searching the keyword “TensorFlow”, while (Islam et al.,
2019) gather their projects using various keywords such as “TensorFlow” and
“Keras”. However, as our focus is not limited to any specific framework, we use
more general keywords. To gather our set of ML baseline projects, we utilize
two keywords: “machine learning” and “deep learning.” This approach allows
us to cast a broader net and capture a comprehensive range of relevant ML
projects for comparison and analysis.

To compare the AIOps projects with the baselines in a similar context,
we apply a similar filtering process to the baseline projects. Like the AIOps
projects, we only extract ML projects that have at least one star and one fork.
Additionally, we take into account that ML projects generally have a longer
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history than AIOps projects. To address this difference, we apply the same date
range for the creation of the ML baseline projects as observed in the AIOps
set. Specifically, the earliest and latest creation dates in the AIOps projects are
2012/12/25 and 2022/10/27, respectively. Thus, we apply the same date range
to filter the ML baseline projects. Following the search and removal of duplicate
projects in two queries, we obtain a total of 87,276 unique repositories for the
ML baseline. Due to time and computational resource limitations, extracting
and analyzing all these projects becomes impractical. Hence, following prior
work (e.g., Chen et al. (2020a) and Zhang et al (2019)), a sample of 383 projects
is needed to represent the pool of 87,275 ML repositories with a confidence
level of 95% and a confidence interval of 5%.

2.3.2 General projects

As our second baseline, we choose general projects from GitHub, meaning that
we do not focus on any particular topic in our search. We also do not limit
the General baseline to a specific programming language (e.g., Python) since
AIOps projects are not limited to a single language as well. In this way, the
General baseline captures the general characteristics of all GitHub projects.
We then apply the same filtering phase as we did for the ML baseline, but
without indicating any specific topic. After completing the filtering, we obtain
4,358,342 public and available repositories for the General baseline. Similar to
the ML baseline, a sample of 385 projects is required to represent the pool of
4,358,342 General repositories with a confidence level of 95% and confidence
interval of 5%.

2.3.3 Manual verification

In order to maintain consistency with our methodology for selecting AIOps
projects, we apply manual verification to our two baseline sets as well. The
selection of baseline projects is based on two key criteria:

1. The projects should contain sufficient code and be mature. Therefore, we
delete the repositories that do not have code and are a collection of papers,
slides, or other repositories.

2. The projects should not be toy projects: we delete the projects that are
homework assignments or university projects.

To construct our baseline sets, we randomly extract 500 projects from
both ML and General pool of repositories. We then divide each set of baseline
projects into two parts of 20% and 80% portions. Similar to Section 2.2.2,
the two coders independently label 20% of each baseline to ensure a reli-
able assessment. We then measure the reliability of our coding using Cohen’s
kappa (Cohen, 1960). The results of our manual verification for choosing the
ML and General baselines indicate a strong agreement between the coders,
with Cohen’s kappa scores of 0.81 and 0.91, respectively. As the measurement
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shows a strong agreement between coders, the rest of baseline projects (the
80% portions) are labeled by the first coder.

We continue our manual labeling process until we obtain the statistical
representative set for each baseline. In the case of ML projects, we thoroughly
analyze 477 projects, ultimately selecting 383 of them to create our final set
of ML baseline. Similarly, for the General projects, we thoroughly analyze 439
projects, resulting in the selection of 385 projects as our final set of General
baseline.

As shown in Figure 1, we compare our AIOps projects with the baseline
projects in RQ1 where we study the repositories statistics of the projects, as
well as in RQ3 where we study the code quality of the projects. In RQ2, we
perform a qualitative study for the AIOps projects only, since the research
question is specifically about AIOps projects (i.e., the input data, analysis
techniques, and goals of AIOps solutions).

3 Research Questions and Results

This section presents the details of our research questions (RQs) and the re-
sults. We organize each RQ by its motivation, approach, and results.

3.1 RQ1. What are the characteristics of AIOps projects in terms
of their GitHub metrics?

3.1.1 Motivation

Prior studies proposed AIOps solutions that leverage AI technologies to sup-
port various software operation efforts (Di Stefano et al., 2021; Li et al., 2022a,
2020b). However, no work has investigated real-world AIOps projects and their
characteristics. Thus, this RQ bridges the gap to study the characteristics of
AIOps projects and compare them with the baseline projects in terms of their
GitHub metrics. With this comparison, we can understand the similar and
different patterns between the characteristics of AIOps projects and the base-
lines. Our findings can help AIOps researchers and practitioners understand
the state of AIOps in practice.

3.1.2 Approach

In this RQ, we analyze the repository characteristics of AIOps projects and
compare them with the baseline projects. We use GitHub REST API (GitHub,
2022) to retrieve the repository characteristics of these projects. In particular,
we analyze the characteristics of AIOps projects and the baseline projects
from three perspectives: growth of repositories, programming languages, and
repository metrics.
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Fig. 2: The cumulative distribution of the creation time of AIOps and baseline
projects.

Table 2: The top-5 languages of AIOps and baseline projects.

AIOps ML General
Language Usage (%) Language Usage (%) Language Usage (%)

Python 71.4 Python 81.7 Python 21.6
Java 10.1 HTML 2.6 JavaScript 16.4
Go 3.4 R 1.8 Java 8.1
HTML 2.5 C++ 1.8 TypeScript 4.7
JavaScript 1.7 JavaScript 1.8 PHP 4.4

Growth of repositories. To understand the evolution of the population of
AIOps projects, we analyze the distribution of the AIOps projects based on
their creation time. We also compare the creation time distribution with that
of the baseline projects.
Programming languages. Developers may use different programming lan-
guages for AIOps projects. Understanding the distribution of the programming
languages can provide insights for future work to support AIOps project devel-
opment. Each project may use multiple programming languages. In this work,
we extract and present the primary language of each project.
Repository metrics. We study the repository metrics of the AIOps projects,
including the number of stars, forks, commits, contributors, releases, pull re-
quests, issues, size, and the status of being archived. For the pull requests, we
sum the open and closed pull requests. Similarly, for the issues, we sum the
open and closed issues.
Statistical tests. We further perform statistical tests to evaluate the statis-
tically significant difference between metrics for AIOps and baseline projects.
We first conduct the Shapiro-Wilk test (Shapiro and Wilk, 1965) to test the
normality of our metrics. Using the widely accepted 0.05 significance thresh-
old, the Shapiro-Wilk test shows that the GitHub metrics of AIOps and base-
line projects do not follow a normal distribution. Since our data is not nor-



12 Roozbeh Aghili et al.

Table 3: Detailed results of Mann–Whitney U and Cliff’s delta tests on
projects’ GitHub metrics.

Metric AIOps vs. ML AIOps vs. General
p-value effect size p-value effect size

Stars 0.00 ** 0.00 ***
Forks 0.00 ** 0.00 ***
Commits 0.34 - 0.92 -
Contributors 0.00 ** 0.02 *
Releases 0.04 * 0.87 -
Pull requests 0.00 ** 0.59 -
Issues 0.00 ** 0.01 *
Size 0.02 * 0.00 ***

Mann–Whitney U results are shown in p-value columns. If the
sets have statistically different distributions, the Cliff’s delta re-
sults are shown in effect size columns.
*: negligible effect **: small effect ***: medium effect

mally distributed, we select nonparametric tests. We use Mann-Whitney U
test (Mann and Whitney, 1947) to compare our samples. We also use Cliff’s
delta test (Cliff, 1993) to test the effect size between our samples. Regarding
Mann-Whiteny U test, we use the significance threshold of 0.05. Regarding
Cliff’s delta test, we use the scale presented by Romano et al. (2006), that
effect of |d| = 0.147 is small, |d| = 0.33 is medium, and |d| = 0.474 is large.

3.1.3 Results

Compared to the ML and General baselines, AIOps projects are
relatively new and exhibit rapid growth in recent years. Figure 2
represents the percentage of projects created in and before each year for the
AIOps and baseline projects. As mentioned in Section 2.3, the creation date of
all the projects is between 2012/12/25 and 2022/10/27. As shown in Figure 2,
in the first few years (from 2012 to 2017), the number of AIOps projects is very
small. In recent years (from 2017 to 2022), the AIOps projects experience a
faster growth compared to the ML and General baselines. As can be seen, the
ML projects also exhibit a faster growth than the General baseline projects.
Like in ML projects, Python is the dominant programming language
in the AIOps projects; however, unlike in ML projects, Java is also
a major programming language used in AIOps projects. As shown in
Table 2, Python is the most used language among all the groups; however,
the usage of Python is much higher in AIOps and ML repositories than in the
General baseline (71.4% and 81.7% in contrast to 21.6%). Another interesting
finding is the relatively high usage of Java in AIOps projects (10.1%), while
Java is not among the top-5 popular languages in the ML baseline.
On average, AIOps projects are more popular and active than the
baselines. Figure 3 represents the box plots of GitHub metrics for the AIOps
projects and the baselines. Table 3 shows the p-value and effect size of the
GitHub metrics of AIOps projects compared to the baselines.
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Fig. 3: Box plots of GitHub metrics for AIOps and baseline projects. The
median number of 0 for the releases, pull requests, and issues indicate that
more than half of the projects do not have any release, pull request, or issue.
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Considering the number of stars and forks, AIOps projects are more pop-
ular than the baselines, as both median and mean values in AIOps projects
are higher than the baselines. In terms of the median value, AIOps projects
have 4 times more stars and forks than the General baseline (median values of
stars in AIOps and General projects are 17 and 4, and median values of forks
in AIOps and General projects are 8 and 2). Regarding the statistical test
results in Table 3, the p-value of stars and forks indicate that AIOps projects
have statistically different distributions from ML and General baselines. For
both of the metrics, the effect size is small compared to the ML baseline and
is medium compared to the General baseline.

Regarding the number of commits, as shown in the statistical test results
in Table 3, there is not a statistically significant difference between AIOps and
baselines. Regarding the number of contributors, it seems that AIOps projects
are more collaborative (median of 2 in AIOps and 0 in baselines). Statistical
results also corroborate this finding, with the effect size of small compared to
ML baseline and negligible (with a statistically significant difference) compared
to General baseline. Regarding the number of releases, there is not a significant
difference between AIOps and General baseline; however, AIOps projects have
a statistically significant difference compared to ML baseline.

Comparing the number of pull requests and issues, as shown in Figures 3f
and 3g, we notice that AIOps projects experience more pull requests and
issues. Statistical results also confirm this finding, as p-values of pull requests
and issues are less than 0.05 (except pull requests for General baseline). This
may be explained in three ways. First, the AIOps projects are more active
and popular (i.e., more developers proactively develop them), leading to a
more significant number of pull requests and issues. The second interpretation
might be that AIOps projects are in the first stages of formation and not
mature enough, having more defects and flaws and more developers trying
to fix these problems. The third explanation is that AIOps projects are on
average larger than the two baseline projects (as shown in Figure 3h), which
may lead to more pull requests and issues.

Comparing the size of the projects, AIOps projects tend to be larger than
General baseline as the statistical tests indicate a medium effect size. AIOps
projects also are larger than ML projects; however, the difference is not as
large as General baseline, as the statistical tests result in a negligible (with
a statistically significant difference) effect size. Comparing the median values,
the size of AIOps projects is 7 times larger than General baseline (7.6 MB for
AIOps projects compared to 1.0 MB for General baseline).

We further analyze the percentage of projects that have been archived. The
results indicate that only 1.7% of AIOps projects have been archived, while
this amount for ML and General baseline is 1.8% and 4.2%, respectively.

Overall, taking into consideration all the mentioned metrics, AIOps projects
seem to be more active and popular than both baselines.
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Summary of RQ1

On average, AIOps projects are receiving more attention than the ML
and General baselines. The primary language used in them is Python,
followed by Java. They are growing faster than the baselines in re-
cent years, demonstrating the growing needs and active practices in
this area. The size of AIOps projects is larger than the baselines, and
focusing on other GitHub metrics such as number of stars, forks, and
releases, AIOps projects seem to be more popular and active than both
baselines.

3.2 RQ2. What are the characteristics of AIOps projects in terms
of their input data, analysis techniques, and goals?

3.2.1 Motivation

AIOps researchers and practitioners leverage different techniques to analyze
different types of operational data and achieve different goals. However, it is
unclear how real AIOps projects leverage data and technologies to achieve the
goals. In this RQ, we qualitatively analyze our set of AIOps projects to un-
derstand the characteristics of these projects’ input data, analysis techniques,
and goals. Our results can help researchers and practitioners further under-
stand the status of AIOps practices and the characteristics of AIOps projects.
Our results can also provide insights for future work to provide support for
different AIOps application scenarios.

3.2.2 Approach

We manually examine each AIOps project to understand its input data, anal-
ysis techniques, and goals. For each project, we manually investigate four
sources of information; the “about” section, the “readme” file, the source code,
and the additional documentations if available. Figure 4 illustrates the three
key concepts of our manual analysis (input data, analysis techniques, and
goals) and their relationship.

– Input data: The types of data (e.g., log data) that an AIOps project takes
as inputs to achieve its objectives.

– Analysis techniques: The main analysis techniques (e.g., machine learn-
ing techniques) that an AIOps project adopts to analyze the input data
and achieve its objectives.

– Goals: The objectives (e.g., anomaly detection) that an AIOps project
aims to achieve through its input data and analysis techniques.

Manual coding process. We use open coding approach (Khandkar, 2009) to
extract the information related to the three key concepts shown in Figure 4.
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Input data Analysis techniques Analysis goals

Fig. 4: The three key concepts of our manual analysis.

Input data

Monitoring Data (87%)

Log (36%)
Performance metric (21%)
Network-traffic data (21%)
KPI (10%)
IoT sensor data (8%)
Trace (4%)

Multi-media (5%) Codebase (5%)

Technical Q/A 
data (2%)

Image (42%)
Video (29%)
Audio (29%)

Alarm (1%)

Fig. 5: The categorization of the input data used in AIOps projects. The high
level categories are highlighted in dark.

Analysis techniques
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Random Forest (21%)

SVM (19%)

Decision Tree (17%)

XGBoost (8%)

Gradient Boosting (1%)

AdaBoost (1%)

Logistic Regression (11%)

Naive Bayes (9%)

KNN (8%)

Linear Regression (4%)

LightGBM (1%)

Unsupervised (41%)

Isolation Forest (24%)  

Hierarchical Clustering (21%)

K-means (17%)

LOF (8%)

PCA (10%)

DBSCAN (4%)

Invariant Miner (3%)

Local Outlier Factor (3%)

SVD (3%)

OPTICS (3%)

GMM (3%)

KDE (1%)

Deep learning (14%)

Unsupervised (60%)

LSTM (49%)

AE (42%)

SOM (3%)

Bayesian networks (3%)

Variational Autoencoder (3%)

Supervised (40%)

ANN (68%)

CNN (21%)

RNN (11%)

Time series models (7%)

ARIMA (29%)

EWMA (13%)

Holt-winters (13%)

Prophet (13%)

ES (8%)

MA (8%)

SR (4%)

SARIMA (4%)

SPOT (4%)

AR (4%)

Statistical analysis (9%)

Descriptive analysis (60%)

Outlier detection (23%)

Exploratory analysis (17%)

Others (3%)

Associate rule mining (40%)

Knowledge graph (30%)

Fault Injection (10%)

Fuzzy matching (10%)

Search crowd knowledge (10%)

Unknown (2%)
Natural language processing (2%)

Pre-trained (67%)

Word2vec (75%)

BERT (25%)

N-gram (33%)

N/A (2%)

Log parsing (7%)

Customized (64%)

Drain (20%)

IPLoM (8%)

AEL (4%)

Spell (4%)

Fig. 6: The categorization of the analysis techniques used in AIOps projects.
The high level categories are highlighted in dark.4

Open coding is widely used among software engineering researchers to conclude
a high-level abstraction from lower-level data (Stol et al., 2016; Wohlin and
Aurum, 2015). To label the projects, the first two authors of the paper (i.e.,
coders) jointly perform a coding process, determining each project’s input
data, analysis techniques, and goals. We perform a five-step coding process as
follows.

Step 1: Coding. Each coder analyzes the 97 AIOps projects and assign
labels for each concept (input data, techniques, and goals) of each project.
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Goals

Anomaly detection (60%)
Log-based (32%)
Network-traffic-based (30%)
Metric-based (15%)
IoT sensor-based (13%)
KPI-based (7%)
Trace-based (2%)
Alarm-based (1%)

Monitoring (12%)

Metric (59%)
Log (26%)
Network-traffic (5%)
Alert (5%)
Health check (5%)

Anomaly prediction (6%)

Metric-based (78%)
Log-based (22%)

Root cause analysis (6%)

Log-based (37%)
Metric-based (25%)
Trace-based (25%)
KPI-based (13%)

Providing datasets (5%)

Log (38%)
Metric (38%)
Trace (12%)
KPI (12%)

AIOps infrastructure (6%)

Log parsing (56%)
Infrastructure (44%)

Automated classification 
(2%)

Queries (34%)
Malwares (33%)
Machines (33%) Knowledge representation 

(2%)

Self healing (1%)

Fig. 7: The categorization of the goals of the AIOps projects. The high level
categories are highlighted in dark.

Multiple labels can be assigned to a concept of a project. This step takes a
few days for each coder to complete.

Step 2: Discussion. The coders share their responses and discuss the
created labels. The main goal of the discussion session is to obtain a common
understanding of the labels for the input data, techniques, and goals. Based
on the separate labels of the coders, we join related labels together and take
apart some high-level labels into smaller ones. After this session, we finalize
the labels for each concept (input data, techniques, and goals).

Step 3: Revision. Based on the results of the discussion session and the
agreed-upon labels, each coder revises his responses from Step 1.

Step 4: Resolving disagreements. The coders compare their final re-
sults from step 3 and discuss any conflict that may remain. The coders try to
resolve the conflicts, but if an agreement can not be reached, the third author
analyzes the project, and the final decision is made.

Step 5: Final revision. In the final stage, we create a mind map from all
the produced labels. We then discuss the labels and form an hierarchy, change
some labels’ names for clarity, and merge some small categories to be cohesive.

3.2.3 Results

Figures 5, 6, and 7 present our categorization of the input data, analysis tech-
niques, and goals of the AIOps projects, respectively. We further define our
coding labels in Tables 4, 5, and 6. It is important to note that each project

4LSTM approaches can be used in a supervised or unsupervised manner (Chen et al.,
2021). In our set of projects and primarily for anomaly detection, projects use LSTM in the
unsupervised form.
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may have multiple input data, analysis techniques, or goals.

Input data: Monitoring data (e.g., logs, performance metrics, and
network-traffic data) is the dominant type of input data of the AIOps
projects, with logs being the most commonly used input data type.
The categorization of the input data is illustrated in Figure 5. We divide the
input data of AIOps projects into five main categories: monitoring data, multi-
media, codebase, technical question-answer (QA) data, and alarm. We define
these categories and provide an example for each in Table 4. Among them,
monitoring data is the most popular, used in 87% of the projects. The moni-
toring data is divided into 6 sub-categories: log, performance metric, network-
traffic data, Key Performance Indicator (KPI), Internet of Things (IoT) sensor
data, and trace. Among them, log data is the most commonly used. These data
types could be used for different purposes such as extensive monitoring, de-
bugging, performance analysis, test analysis, and business analytics (Chen and
Jiang, 2021; Svoboda et al., 2015). In this paper, we use the umbrella term of
“monitoring data” to name these data types.

We find two interesting input data types for the AIOps projects: network
traffic and IoT sensor data. A considerable proportion of the projects (21%)
use network traffic data as their input. Also, 8% of projects use IoT sensor
data.

The second popular category of input data for AIOps approaches is multi-
media (image, video, or audio) (5%), followed by codebase (5%), technical Q/A
data (2%), and alarm (1%). We define the input of a project as “codebase” if it
analyzes the source code or configuration files of other software. We define the
input as “technical Q/A data” if the project analyzes data from Q/A websites
like Stack Overflow.

Analysis techniques: Classical machine learning models are the most
commonly used analysis techniques, followed far behind by deep
learning, statistical analysis, and time series models. We present our
categorization of the applied analysis techniques of AIOps projects in detail
in Figure 6. We derive 9 high-level categories: classic machine learning (54%),
deep learning (14%), statistical analysis (9%), time series models (7%), log
parsing (7%), others (3%), natural language processing (2%), unknown (2%),
and N/A (2%). Definitions and examples for each category can be found in
Table 5.

Both the classic machine learning and deep learning categories are fur-
ther divided into supervised and unsupervised learning algorithms. Regard-
ing classic machine learning approaches, supervised algorithms are used more
than unsupervised ones (59% compared to 41%). The top-3 supervised al-
gorithms are Random Forest (23%), Support Vector Machine (SVM) (19%),
and Decision Tree (17%). The top-3 unsupervised algorithms are Isolation
Forest (24%), Hierarchical Clustering (21%), and K-means (13%). Regarding
the deep learning approaches, unsupervised techniques are more popular than
supervised algorithms (60% compared to 40%). Long Short-Term Memory
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Table 4: Different types of input data, their definitions, and examples.

Input data Definition Repository example

Monitoring Data Different types of data that
record the runtime status of a system.

Log System-generated data that records Repository (58811148) uses log data as
runtime events that have happened. input to perform anomaly detection.

Performance metric Quantitative measurements used to Repository (160285839) uses
track the performance of a system. different performance metrics such as
These metrics are often operational, CPU and memory usage to perform
such as CPU usage. various tasks such as anomaly

detection and time series forecasting.

Network-traffic data Monitoring data that records Repository (79239275) uses network-
network activities. traffic data to identify malicious

behaviors and attacks.

KPI Measurements related to key business Repository (142442484) uses different
goals of a system. These metrics are KPIs in time intervals
often strategic. to identify impactful system problems.

IoT sensor data Data collected by devices connected Repository (142325304) uses real-time
to an IoT network. IoT sensor data to detect anomalies.

Trace A specialized use of logging to record Repository (397983735) gathers a
information about a system’s dataset of traces that can be used
execution with comprehensive details. to analyze operations problems.

Multi-media Different types of multi-media data, Repository (287642401) generates
including images, videos, and summaries of data types including
audios. image data for monitoring purposes

Codebase Source code and configuration Repository (201529303) can be
files of software systems. installed on Kubernetes source code

and provide self-monitoring and
self-healing.

Technical Q/A data Data collected from Repository (345320486) extracts
technical Q/A websites such as information from Stack Overflow to
Stack Overflow. find fast solutions for faults in their

platform.

Alarm Alarms generated Repository (160285839) uses alarms
during system run time. to find the association rules between

them.

To find a GitHub repository with its ID, one can either click the hyperlink or use the link
https://api.github.com/repositories/{ID} where {ID} is replaced by a specific repository ID.

(LSTM), AutoEncoder (AE), and Self-Organizing Map (SOM) are the most
used unsupervised algorithms, while Artificial Neural Networks (ANN) is the
dominant supervised technique.

Overall, considering supervised and unsupervised usage in classical machine
learning and deep learning approaches, 37% of the projects in our study employ
supervised learning, while 31% utilize unsupervised approaches. Hence, the
difference between the adoption of supervised and unsupervised methods is
not substantial. Therefore, we could not find a strong correlation with Dang
et al. (2019), where they state that in many AIOps cases, only unsupervised
machine learning models are practical. However, we find that some projects
in our study explore a combination of supervised and unsupervised models,
conducting comparisons to assess their performance for specific tasks. While
unsupervised techniques outperforms the supervised approaches in scenarios
where data labeling is limited or new patterns of data can emerge, there are

https://github.com/logpai/loglizer
https://github.com/jixinpu/aiopstools
https://github.com/alexamanpreet/Network-Log-and-Traffic-Analysis
https://github.com/logpai/Log3C
https://github.com/kaiwaehner/ksql-udf-deep-learning-mqtt-iot
https://github.com/CloudWise-OpenSource/GAIA-DataSet
https://github.com/whylabs/whylogs
https://github.com/keikoproj/active-monitor
https://github.com/OS-ABC/AIOps-Event-Graph-WebData
https://github.com/jixinpu/aiopstools
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Table 5: Different types of analysis techniques, their definitions, and examples.

Analysis techniques Definition Repository example

Classic machine Classic machine learning techniques such as
learning Logistic Regression and Decision Tree.

Supervised-learning A leaning technique that uses Repository (165321356) uses various
labeled datasets. classic supervised approaches such as

Random Forest and Decision Tree to
detect anomalies in KPI data.

Unsupervised-learning An approach that system learns Repository (58811148) implements
without using labeled datasets. multiple unsupervised approaches

such as Isolation Forest and Invariant
Miner to detect anomalies.

Deep learning A subfield of machine learning that
uses artificial neural networks with multiple
layers (i.e., deep neural networks).

Supervised-learning A leaning technique that uses Repository (187774599) uses Artificial
labeled datasets. Neural Network to find anomalous

behavior on IoT sensor data.

Unsupervised-learning A technique that learns Repository (246569386) uses Long
patterns from unlabelled data. Short-Term Memory to detect

anomalies from log data.

Statistical analysis Analytical techniques to
understand, analyze and interpret
the input data.

Descriptive analysis Describing the features of data and Repository (114942949) uses descriptive
summarize data in a quantitatively analysis such as measuring minimum and
manner. maximum values and plotting scatter

figures to interpret their IoT sensor data.

Statistical outlier Applying statistical tests such as Repository (156308650) uses z-score
detection z-score to identify outlier values. test to detect anomalies on CPU usage

data.

Exploratory analysis Exploring data to identify new Repository (123162193) uses exploratory
connections, inspect missing data, analysis such as plotting and describing
or check hypotheses. their log data to inspect and understand

their input data.

Time series model Techniques that aim to model time Repository (302842095) applies different
series data, mainly used for finding time series models such as Auto
trends and forecasting. Regression and Holt-winters to detect

anomalies and analyze root causes.

Log parsing Techniques that analyze and extract Repository (345575577) uses Drain to do
information from log data. log parsing. It then uses the extracted

information to perform anomaly detection.

Natural language Techniques that aim to analyze Repository (316407231) leverages
processing and model text data. Bidirectional Encoder Representations

from Transformers (BERT), a pre-trained
language model as one of their techniques
to perform anomaly prediction.

Others Other techniques that could not be Repository (146802240) uses fuzzy
categorized in previous categories. matching to classify web queries.

Unknown Projects for which we could not find
any specific techniques.

N/A Projects that only provide Repository (238914477) is a dataset of
datasets or do not use any KPI data and does not use any
analysis techniques. analysis techniques.

To find a GitHub repository with its ID, one can either click the hyperlink or use the link https://api.github.com/repositories/{ID}
where {ID} is replaced by a specific repository ID.

also instances where supervised approaches achieve better results. For example,
as mentioned by He et al. (2016) and Chen et al. (2021), supervised machine
learning algorithms usually outperform in anomaly detection use cases.

The following three common techniques are statistical analysis, time series
models, and log parsing. We find three major statistical analysis techniques:

https://github.com/shimo85/2019AIOps_ai
https://github.com/logpai/loglizer
https://github.com/Shauqi/Attack-and-Anomaly-Detection-in-IoT-Sensors-in-IoT-Sites-Using-Machine-Learning-Approaches
https://github.com/donglee-afar/logdeep
https://github.com/IBM-Cloud/iot-device-phone-simulator
https://github.com/ThirdEyeData/Anomaly-Detections-Apache-Spark
https://github.com/BBVA/Tarkin
https://github.com/dreamhomes/TroubleShooter
https://github.com/ixalodecte/AI-Log-Analyzer
https://github.com/Ohou-csu/AIOps-Learning-and-Exploration
https://github.com/NCBI-Hackathons/Semantic-search-log-analysis-pipeline
https://github.com/NetManAIOps/KPI-Anomaly-Detection
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Table 6: Different types of goals, their definitions, and examples.

Goal Definition Repository example

Anomaly detection Identifying anomalies that deviate Repository (134266587) uses log data
from the normal behavior. and analyze them to find anomalous

behavior. It then display anomalies
using dynamic graphics.

Monitoring Collecting and observing the Repository (221989665) provides data
real-time stream of data to monitoring and alerting.
understand system runtime status.

Anomaly prediction Analyzing historical data to Repository (169132015) uses metric
forecast future anomalies. data of hard drives to predict the

failures in the near future.

Root cause analysis Identifying the root causes of Repository (238914477) analyzes the
faults or problems. logs of Kubernetes containers to find

the root causes of issues.

AIOps infrastructure Providing infrastructure support Repository (244678163) provides
or utility functions such as log automated parsing of raw logs.
parsing.

Providing datasets Providing datasets to be used Repository (60705895) collects various
in other AIOps projects. system log datasets that can be used

for log analysis.

Knowledge representation Extracting and summarizing Repository (345320486) extracts
knowledge from datasets information from Stack Overflow to
or websites. find fast solutions for faults in their

platform.

Automated classification Classifying different input data Repository (238914477) classifies web
instance based on their similarities. queries to find similar important

information and trends.

Self healing Conducting health checks and Repository (238914477) aims to provide
automatically fixing the issues. software systems with monitoring and

self-healing.

To find a GitHub repository with its ID, one can either click the hyperlink or use the link
https://api.github.com/repositories/{ID} where {ID} is replaced by a specific repository ID.

descriptive analysis, outlier detection, and exploratory analysis. We catego-
rize the technique of a project as descriptive analysis if it analyzes the data
numerically, and we group it as exploratory if it uses visualization to analyze
the data. Usually, the exploratory analysis will be done after performing the
descriptive analysis.

As most of the input data is time series (e.g., logs, performance metrics,
network traffic data), it is not surprising that some projects use time series
techniques to model their data. AutoRegressive Integrated Moving Average
(ARIMA) is the most common time-series technique followed by Exponentially
Weighted Moving Average (EWMA).

As shown in Figure 5, logs are the most-used input data in AIOps projects.
To handle logs, projects either use log parsing techniques or Natural Language
Processing (NLP) approaches. Regarding log parsing techniques, developers
tend to write their customized version of log parsers (with 64%). After com-
ing up with customized log parsers, the most common log parser that is used
among AIOps projects is Drain (with 20%). Regarding NLP approaches, only
2% of AIOps projects use them, with Word2vec and BERT as the most com-
mon techniques. with the recent developments in the NLP field, for example
generating language models such as BERT (Devlin et al., 2018) and Code-

https://github.com/alexfrancow/A-Detector
https://github.com/opendistro-for-elasticsearch/anomaly-detection
https://github.com/geekidharsh/predicting-harddrive-failures-using-ml
https://github.com/afritzler/oopsie
https://github.com/nailo2c/spellpy
https://github.com/logpai/loghub
https://github.com/OS-ABC/AIOps-Event-Graph-WebData
https://github.com/NCBI-Hackathons/Semantic-search-log-analysis-pipeline
https://github.com/keikoproj/active-monitor
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Fig. 8: The relation between the input data and goals of the AIOps projects.
The sizes of the circles are proportional to the number of projects that use a
certain input for a certain goal.

BERT (Feng et al., 2020), we believe AIOps solutions can also benefit more
from NLP techniques. We discuss this point in more detail in Section 4.

Goals: Anomaly detection is the most popular goal of the studied
AIOps projects, followed by monitoring, anomaly prediction, root
cause analysis, and AIOps infrastructure. We find 9 categories for the
goals of the AIOps projects which are shown in Figure 7 and are described in
Table 6. Anomaly detection (60%) and monitoring (12%) are the most common
reasons for using AIOps solutions. Anomaly prediction, root cause analysis,
and AIOps infrastructure are the next main goals of our set of projects. We
categorize the projects as “providing datasets” if they mainly provide public
AIOps data that can be used by other practitioners or researchers. We catego-
rize projects as “AIOps infrastructure” if they provide infrastructural support
such as log parsing.

We find that for tasks such as anomaly detection and root cause analysis,
developers usually use logs as their main source. However, for monitoring and
anomaly prediction tasks, the main source of data is performance metrics. We
also find that only 1% of projects do self-healing as their final goal. It means,
in the other projects, after achieving the final goal, for example, anomaly
detection, an agent (e.g., developer) should decide what to do with the founded
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anomalies. This not completely automated procedure will lead to a loss of time
and resources. We discuss this point in more detail in Section 4.

The relation between the input data and the goals of the AIOps projects is
shown in Figure 8. As shown in this figure, log data and network traffic data
are the most used data types for achieving the goal of anomaly detection, while
performance metric data is the most used data type for anomaly prediction.
Log data and performance metric data are also the most common data sources
for the goal of root cause analysis.

Summary of RQ2

Logs are the most commonly used input data in the studied AIOps
projects, followed by performance metrics and network-traffic data.
Classical machine learning techniques are the most used analysis tech-
niques, followed (far behind) by deep learning, statistical analysis, time
series models, and log parsing. The most popular goals of the AIOps
projects are anomaly detection, followed by monitoring, anomaly pre-
diction, root cause analysis, and AIOps infrastructure.

3.3 RQ3. What is the code quality of AIOps projects?

3.3.1 Motivation

Ensuring the quality of AIOps projects is vital for the software operation tasks
they are designed for. Otherwise, the insights derived from their analysis would
not be reliable. Thus, in this RQ, we aim to understand the code quality of the
AIOps projects. We analyze different metrics in order to come to a compre-
hensive conclusion. We also compare the code quality of AIOps projects with
our baselines to find similar patterns or differences. Our results can provide
insights for future work to improve the quality of AIOps projects.

3.3.2 Approach

We use SonarQube5, a static code analysis tool that supports a large number of
programming languages, including Python, Java, JavaScript, and Go, to stat-
ically measure the quality of the AIOps projects and the baselines, as AIOps
projects are developed by different languages (RQ1). Many recent studies have
utilized or evaluated SonarQube for code quality measurement (Businge et al.,
2019; Lomio et al., 2021; Saarimaki et al., 2019).
Code quality metrics. To understand the code quality of AIOps projects, we
measure the metrics of each studied project along four dimensions: size, relia-
bility, maintainability, and security. The detailed list of the measured metrics
include: Lines of Code (LOC), comment lines, density of comments, number

5https://www.sonarqube.org/

https://www.sonarqube.org/
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Table 7: The code quality metrics and their definitions.

Metric Definition

Size The metrics that represents the size of a project.

Lines of Code (LOC) Number of lines that contain at least one character which is not a whitespace,
a tabulation, or part of a comment.

Comment lines Number of lines containing comments. Non-significant comments (empty comment
lines, comment lines only having special characters, etc.) are not considered.

Density of comments The amount of lines of comments compared to lines of code. It is calculated
based on the following formula.
Density of comments = Comment lines / (Lines of code + Comment lines) * 100

Reliability The issues that make the code behave differently as the developer was
intended.

Number of bugs Total number of bugs in a project. A bug is defined as an issue that represents
something wrong in the code.

Maintainability The issues that make the code more difficult to update than it should.

Number of code smells Total number of code smells in a project. A code smell is a violation of design
patterns that may negatively impact software quality. (Rasool and Arshad, 2015)

Technical debt time The estimated time required to fix all the code smells. If the values are written
in days, an 8-hour day is assumed.

Security The issues that make potential weaknesses in terms of security. These
issues might be benefited by hackers.

Number of vulnerabilities Total number of vulnerabilities in a project. A vulnebarity is a piece of code that
could be exploit by a hacker.

Number of security hotspots Total number of security hotspots in a project. A security hotspot is the pieces of
code that are security-sensitive.

All the definitions are extracted from SonarQube. A more detailed definition could be found on SonarQube documentations.

of bugs, number of code smells, number of vulnerabilities, number of security
hotspots, and technical debt time. All these quality metrics are extracted using
SonarQube. We define these metrics in Table 7.

SonarQube also assigns a severity level to each of the issues. It categorizes
the severities into four groups; Minor, Major, Critical, and Blocker, from the
lowest to the highest severity6.
Finding the most violated rules and rule categories. To provide insights
into the primary code quality issues among the AIOps projects, we count
each issue’s assigned rules and rule categories (i.e., tags) and report the most
repeated ones. SonarQube evaluates the source code against its set of rules
to detect specific issues. Also, rule categories are a way to categorize trivial
rules into higher-level concepts. SonarQube rules include code smells, bugs,
vulnerabilities, and security hotspots. Each rule is related to a specific defined
issue, and different rules can be part of one rule category.

To find the most violated issues (i.e., rules and rule categories), it is essen-
tial to consider two aspects: the occurrence of an issue in each project and the
percentage of projects that have that issue. Hence, we calculate the weight of
violated issues (“W” in Tables 9 and 10) to find the most violated issues. Each
project can have multiple violated issues. We calculate the weight of issue i in

6https://docs.sonarqube.org/latest/user-guide/rules/

https://docs.sonarqube.org/latest/user-guide/metric-definitions/
https://docs.sonarqube.org/latest/user-guide/rules/
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project j using the following formula,

wij =
nij

npj

where nij is the frequency of issue i in project j and npj is the total number of
issues in project j. Then, to calculate the weight of issue i in all the projects,
we calculate its average in all the projects.

wi =

∑n
j=1 wij

n

Preparing project data and running SonarQube. We execute the fol-
lowing three steps to analyze the quality of each of the AIOps and baseline
projects.

Step 1. Clone the projects from GitHub. We clone the GitHub repos-
itories on the local machine so that we can analyze their source code.

Step 2. Preprocess the project data. For two of the popular languages
among our projects (i.e., Python and Java), we have to perform a preprocessing
phase before performing the source code analysis using SonarQube. We do not
need to perform this phase for other languages.

Python code. SonarQube does not support the .ipynb format which is the
file format of Jupyter notebooks. To overcome this limitation, we first con-
vert the .ipynb files in each project to the .py format using the nbconvert
library (Jupyter, 2022) in Python. We then use SonarQube to analyze the
resulting .py files.

Java code. To analyze the Java code, SonarQube requires the compiled
files (.class files). However, in most cases, developers do not upload the .class
files in their GitHub repositories and only put the .java files. To address this
issue, we compile the .java files into .class files. We primarily leverage the
build automation tool (i.e., Gradle, Apache Maven, and Apache ANT) of the
project to compile the project files. For example, for Maven projects, we use
mvn compile. If we could not find a build automation tool, we use javac to
compile the .java files.

Step 3. Execute SonarQube. We write a script that sends the source
code of each project to a SonarQube web server that is installed locally. After
SonarQube finishes the analysis, we extract the results.

We are able to analyze the source code of 770 out of the 887 projects
(87%) in all three groups of projects (AIOps projects and the two baselines).
The success ratio is 93%, 92%, and 79% for AIOps, ML, and General projects,
respectively. The main reasons of failures include removed GitHub reposito-
ries and failures in compiling the Java projects. Analyzing the source code of
projects at this scale is rarely reported in the literature, and performing the
SonarQube analysis experiments took several weeks.
Statistical tests. Similar to the first RQ, we perform statistical tests to vali-
date our results and ensure their statistical significance. We use Mann-Whitney
U test (Mann and Whitney, 1947) to compare the distribution of the metrics
between AIOps and baseline projects. We also use Cliff’s delta test (Cliff,
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Table 8: Detailed results of Mann–Whitney U and Cliff’s delta tests on
projects’ code quality.

Metric AIOps vs. ML AIOps vs. General
p-value effect size p-value effect size

Bugs 0.01 ** 0.03 *
Code smells 0.00 ** 0.00 **
Vulnerabilities 0.00 * 1.00 -
Security hotspots 0.03 * 0.18 -
Technical debt 0.00 ** 0.00 **
LOC 0.01 ** 0.02 *
Comment lines 0.01 ** 0.00 ***
Comment density 0.42 - 0.00 ***

Mann–Whitney U results are shown in p-value columns. If the sets
have statistically different distributions, the Cliff’s delta results are
shown in effect size columns.
*: negligible effect **: small effect ***: medium effect

1993) to measure the effect size of the difference between the distributions.
We use the same approach and scale (i.e., effect of |d| = 0.147 is small, |d| =
0.33 is medium, and |d| = 0.474 is large) as described in Section 3.1.2.

3.3.3 Results

AIOps projects have poorer quality than the ML and General base-
lines. Figure 9 represents the box plots of code quality metrics extracted from
SonarQube for AIOps and baseline projects. Table 8 illustrates the p-value
and effect size of the code quality metrics of AIOps projects comparing to the
baselines. For bugs, code smells, vulnerabilities, security hotspots, and techni-
cal debt, we further report the values normalized by the LOC of each project.
We report these normalized values in Figure 10 to ensure that our findings are
robust and not biased by the size of the projects.

According to the p-values of Mann-Whitney U test shown in Table 8,
the difference between most of the code quality metrics of AIOps projects
compared to baselines is significant. Considering the number of bugs and code
smells, AIOps projects are statistically different from the baselines, and the
effect size of their differences is small or negligible. As shown in Figure 9a,
AIOps projects have a higher number of bugs in terms of both mean and
median, with a median of 3 bugs, while the median is 1 in both baselines.
This pattern is also seen in the normalized version in Figure 10a. The number
of code smells is also higher in AIOps projects based on both original and
normalized versions presented in Figures 9b and 10b. The median number of
code smells in AIOps projects is 51.0, twice the ML baselines with 26.5 and
more than 3.5 times the General baseline with 14.0.

Regarding the number of vulnerabilities and security hotspots among the
projects, no statistically significant difference is seen between AIOps and Gen-
eral projects, according to Table 8. However, AIOps and ML baseline are
statistically different, with an effect size of negligible. As Figures 9c and 10c
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Fig. 9: Box plots of code quality metrics for AIOps and baseline projects.
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Fig. 10: Box plots of code quality metrics for AIOps and baseline projects.
The values are normalized by LOC of each project.

show, most of the AIOps and baseline projects do not have any vulnerabilities.
However, as Figure 9d represents, the median number of security hotspots in
AIOps is 1 while it is 0 in ML baseline; and the mean number of security
hotspots in AIOps is 22.4 while it is only 5.1 in ML baseline.

Technical debt is the next analyzed security metric. Table 8 suggests that
there is a statistically significant difference between AIOps and baselines with
a small effect size. As Figure 9e shows, both the mean and median of AIOps



Studying the Characteristics of AIOps Projects on GitHub 29

A I O p s M L G e n e r a l0

2 0

4 0

6 0

8 0

1 0 0

Bu
gs

 S e c u r i t y  h o t s p o t s   V u l n e r a b i l i t i e s   C o d e  s m e l l s   B u g s

Fig. 11: The distribution of the quality issues among the AIOps and baseline
projects.

technical debt are higher than the baselines. The mean value of technical debt
for the AIOps set is 80.5 hours, while it is 26.8 and 57.3 hours for ML and
General baselines, respectively. The median value of technical debt in AIOps
(5.4 hours) is 2 times the ML baseline (2.9 hours) and 3 times the General
baseline (1.7 hours). As Figure 10e suggests, technical debt in AIOps projects
is higher than the baselines, even in the normalized version. These findings
are in line with the high volume of issues observed in AIOps repositories, as
shown in Figure 3.

AIOps projects have more lines of code than baselines and the same
amount of comments as the ML baseline.

Table 8 shows that AIOps set is statistically different from the baselines
in terms of number of lines of code and number of comment lines. According
to 9f, the mean value of LOC for AIOps projects is 21.2k, 3 times the ML
baseline (with 7.0k) and 2 times the General baseline (10.7k). The median
value also indicates a similar pattern, with 1.4k for AIOps projects and 0.8k
for the baselines. The amount of comments written in AIOps projects is also
higher than the baselines, with a median of 0.3k compared to 0.2k and 0.1k for
the ML and General baselines. Figure 9h shows the comment density between
the three sets. The density of comments in AIOps and ML projects are similar,
with the medians of 19.0% and 20.9%, respectively. The comment density for
the General baseline is less than half of the AIOps set, with only 8.4%.

AIOps projects suffer from code smells more than other types of is-
sues. Figure 11 illustrates the distribution of bugs, code smells, vulnerabilities,
and security hotspots among the projects. The percentage of vulnerabilities is
much smaller than other types of issues in all the projects. In AIOps projects,
the main issue is related to code smells, which account for 85% of all issues,
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Table 9: The top-10 violated SonarQube rules for AIOps projects and the
baselines. “Sev” indicates the severity of issues, “W” represents the weight of
rules, and “N” is the percentage of projects with that rule. “Mn” stands for
Minor, “Mj” stands for Major, “Cr” stands for Critical, and “Bl” stands for
Blocker.

AIOps ML General
Rule Sev W(%) N(%) Rule Sev W(%) N(%) Rule Sev W(%) N(%)

python:S117 Mn 17.6 59.1 python:S117 Mn 16.8 59.3 python:S117 Mn 5.2 19.7
python:S125 Mj 14.6 66.3 python:S125 Mj 15.5 63.8 python:S125 Mj 3.9 20.3
python:S1192 Cr 7.8 67.3 python:S905 Mj 7.7 27.7 javascript:S1117 Mj 3.4 19.3
python:S905 Mj 7.0 25.5 python:S1192 Cr 7.3 55.4 Web:S5254 Mj 3.0 20.7
python:S1481 Mn 4.2 53.6 python:S1481 Mn 5.9 52.5 python:S1192 Cr 2.6 19.0
python:S3776 Cr 3.3 48.1 python:S1542 Mj 4.0 41.0 javascript:S125 Mj 2.3 16.7
python:S1542 Mj 3.2 44.5 python:S3776 Cr 3.2 43.5 python:S1481 Mn 1.9 18.0
python:S2208 Cr 2.3 25.4 python:S2320 Mj 2.8 8.8 xml:S125 Mj 1.8 5.2
python:S5754 Cr 2.2 35.4 python:S2208 Cr 2.4 23.4 Web:S1827 Mj 1.7 7.5
python:S100 Mn 2.1 20.9 python:S5754 Cr 2.1 25.4 javascript:S2703 Bl 1.7 12.4

Table 10: The top-10 violated SonarQube tags (rule categories) for AIOps
projects and the baselines. “W” represents the weight of tags, and “N” is the
percentage of projects with that tag.

AIOps ML General
Tag W(%) N(%) Tag W(%) N(%) Tag W(%) N(%)

convention 25.7 76.4 unused 26.7 83.6 unused 15.1 62.3
unused 24.2 93.6 convention 21.9 67.8 convention 10.8 40.0
design 9.1 79.1 cwe 6.7 56.0 suspicious 7.5 52.5
cwe 8.3 66.4 design 6.5 57.6 pitfall 7.5 47.9
suspicious 5.6 66.4 suspicious 4.4 48.0 cwe 6.1 50.5
brain-overload 4.2 60.9 pitfall 3.4 39.8 design 5.1 38.4
pitfall 3.3 42.7 brain-overload 3.3 49.2 accessibility 4.5 29.2
error-handling 2.1 49.1 obsolete 2.0 13.6 brain-overload 3.6 43.6
bad-practice 2.0 51.8 bad-practice 2.0 37.9 wcag2-a 3.5 27.5
clumsy 1.6 36.4 error-handling 2.0 33.6 confusing 3.1 38.0

13% more than the ML baseline. After code smells, the most common type of
issue is bugs, with 10%, and then security hotspots, with 5%.
AIOps and ML projects have similar types of issues in terms of vio-
lated SonarQube rules and rule categories. We report the most violated
rules and rule categories in Tables 9 and 10. We also define these violated rules
and rule categories in AIOps field (based on SonarQube website78) in Tables 11
and 12. As shown in the tables, AIOps and ML projects have similar rule and
rule category violations. In terms of violated rules, 9 out of the top-10 vio-
lated rules are common between AIOps and ML projects. Furthermore, the
first two most violated rules (i.e., python:S117 and python:S125) are the same
in AIOps and ML projects, with similar weights (17.6% and 14.6% for AIOps,
and 16.8% and 15.5% for ML projects). Also, in terms of most violated rule
categories, 9 out of the top-10 violated rule categories are common between
AIOps and ML projects.

7https://rules.sonarsource.com/
8https://docs.sonarqube.org/latest/user-guide/built-in-rule-tags/

https://rules.sonarsource.com/
https://docs.sonarqube.org/latest/user-guide/built-in-rule-tags/
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Comparing issues between the AIOps projects and the General baseline, 4
of the top-10 violated rules and 7 of the top-10 violated rule tags are common.
However, the weight and percentage of projects having these issues in AIOps
projects are much higher. As an example, Python:S117 is the most violated
rule in both AIOps and General projects. However, the weight and percentage
of projects having this violated rule in AIOps are 17.6% and 59.1% but in the
General baseline are 5.2% and 19.7%, respectively.

We provide the complete list of violated rules and rule categories in AIOps
projects and other baselines in our replication package.

Table 11: The most violated SonarQube rules and their definitions in AIOps
projects.

Rules
Name Definition

python:S117 Local variable and function parameter names should
comply with a naming convention.

python:S125 Sections of code should not be commented out.
python:S1192 String literals should not be duplicated
python:S905 Non-empty statements should change control flow or have

at least one side-effect.
python:S1481 Unused local variables should be removed.
python:S3776 Cognitive Complexity of functions should not be too high.
python:S1542 Function names should comply with a naming convention.
python:S2208 Wildcard imports should not be used.
python:S5754 SystemExit exception should be re-raised immediately.
python:S100 Method names should comply with a naming convention.

Naming convention, commented-out code, duplicated string literals,
high complexity of functions, and wildcard imports are among the
top violated rules in AIOps projects. Regarding the most violated rules
in AIOps, the first three are python:S117, python:S125, and python:S1192. The
first one has a minor severity and is about the non compliance of naming con-
vention. Shared naming conventions are vital and allow teams to collaborate
effectively. The second one has a major severity and is about commenting out
the unused sections of code which reduces readability. Instead, unused code
should be deleted. The third one has a critical severity and is about using du-
plicated string literals. It makes the process of refactoring error-prone because
the programmer must be sure to update all occurrences of the string.

In addition to these violated rules, three more rules with critical severity ex-
ist in the top 10 violated rules of AIOps projects; python:S3776, python:S2208,
and python:S5754. Python:S3776 is about the cognitive complexity of code. It
measures how hard the control flow of a function is to understand. Functions
with high cognitive complexity will be difficult to maintain. Python:S2208
is about using wildcard imports (i.e., from module import *). Importing all
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Table 12: The most violated SonarQube tags (rule categories) and their defi-
nitions in AIOps projects.

Tags
Name Definition

convention Coding convention - typically formatting, naming, whitespace.
unused Unused code; e.g., a private variable that is never used.
design There is something questionable about the design of the code.
cwe Relates to a rule in the Common Weakness Enumeration.

For more information, visit https://cwe.mitre.org/.
suspicious It’s not guaranteed that this is a bug, but it looks suspiciously

like one. At the very least, the code should be re-examined
and likely refactored for clarity.

brain-overload There is too much to keep in your head at one time.
pitfall Nothing is wrong yet, but something could go wrong in the

future; a trap has been set for the next person, and they’ll
probably fall into it and screw up the code.

error-handling Issues related to handling the errors such as Exception methods.
bad-practice The code likely works as designed, but the way it was designed

is widely recognized as being a bad idea.
clumsy Extra steps are used to accomplish something that could be

done more clearly and concisely.

public names from a module has multiple disadvantages. It can lead to con-
flicts between local names and imported ones, or same names between two
different packages. It also reduces code readability and may cause confusion
about which classes are imported and used. python:S5754 is about handling
exceptions. This rule indicates that SystemExit exception should be re-raised
immediately.
Naming convention, unused or commented-out code, and poor de-
sign are among the top violated rule categories. Regarding the most
violated rule categories in AIOps repositories, convention, unused, and design
are the worst issues. Convention category is about fulfilling coding conven-
tions, including naming functions and variables, complying white-spaces and
indentations. The second most violated rule category is unused. This category
is about unused code that decreases the performance of the system. Some ex-
amples of this category are unused assignments, unused private classes, and
empty test cases. The third most ignored rule category, design, is about the
bad design of the software. Some examples of this group are unstable tests,
duplicated string literals, and using randomized data in test cases.

Having rule category issues such as naming conventions, unused code, and
bad design indicate that developers tend to write AIOps code in an ad hoc
manner, which hinders their project’s reusability and maintainability. Also,
looking at the most violated rules and rule categories, we realize paying more
attention to details can increase the quality of AIOps solutions. For example,
3 out of the top-10 violated rules are related to naming conventions. Only
following the naming conventions can reduce the number of issues heavily.

https://cwe.mitre.org/
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Furthermore, since most of the rules (9 of top-10) and rule categories (9 of
top-10) are common in AIOps and ML projects, AIOps projects can benefit
from the quality assessment and quality assurance tools and techniques that
have been developed for ML systems. The above points are discussed in more
detail in Section 4.

Summary of RQ3

Although AIOps projects have an adequate amount of comments com-
pared to the ML and General baselines, AIOps projects exhibit poorer
quality than the two baselines in terms of a variety of quality met-
rics (e.g., bugs, code smells, and technical debt). In particular, code
smells are the dominant type of issue in AIOps projects. We also iden-
tify the most common issues in AIOps projects: naming convention,
unused code, and bad design are the top-3 violated rule categories.
Moreover, we observe the similarity of violated rules between AIOps
and ML projects. Future efforts are needed to reduce the issues iden-
tified in this work and improve the quality of AIOps projects, e.g., by
designing tools for fixing bugs/smells or deriving coding guidelines. We
also encourage future AIOps projects to reduce the ad-hocness of their
code to improve reusability and maintainability.

4 Discussion

Based on the findings of our study, in this section, we discuss the state of AIOps
in open-source projects. We then discuss the current challenges of developing
AIOps applications and foresee possible future directions for AIOps researchers
and practitioners. Finally, to assess the robustness of our findings, we add a
stricter filtering criterion and report the main results considering only more
mature projects. We compare the results obtained from these projects with
our main findings to make sure our findings are robust enough.

4.1 AIOps: Where is it now?

The number of AIOps applications is growing fast, and they are re-
ceiving a lot of attention from the open-source community. Regarding
the results of Section 3.1.3, we find that the speed of growth for AIOps applica-
tions is faster than that for general-purposed projects on GitHub. We further
find that AIOps applications are receiving more attention regarding GitHub
metrics compared to machine learning and general-purposed applications. This
attention towards the AIOps area encourages researchers and practitioners to
develop new technical innovations in various areas of AIOps. We discuss some
of the potential future directions below.
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Monitoring data - especially logs, performance metrics, and network-
traffic data - are the most common data types of AIOps applications.
Regarding the results of Section 3.2.3, we find that almost 70% of the projects
use logs, performance metrics, or network-traffic data. The usage of other types
of input data (e.g., alarms) is limited in open-source AIOps applications. This
finding is in line with Notero et al. (2021b) that many AIOps-related papers
also use event logs and performance metrics as their data sources. Future
efforts may be invested to investigate how to optimally process these com-
mon data types in various downstream tasks. For example, time-series data
representation techniques (Wilson, 2017) and time-series segmentation tech-
niques (Lovrić et al., 2014) may be explored to improve data representations
of such time-series data.

Classical machine learning is the most common technique in AIOps
applications. We find that over half (54%) of the AIOps applications use clas-
sical machine learning as their primary technique, while only 14% use deep
learning techniques. AIOps practitioners also develop AIOps applications us-
ing a variety of methods, including time-series and statistical models. However,
some techniques (e.g., natural language processing) are not used frequently.
We suggest that future AIOps solutions may further utilize more sophisticated
techniques of deep learning and natural language processing. However, as sug-
gested by Li et al. (2020b) and Lyu et al. (2021), AIOps models should be
trustable and interpretable; hence, using black-box models without the ability
to interpret is not recommended. Therefore, we also suggest that future AIOps
solutions should always experiment with classical solutions instead of simply
assuming deep learning techniques are the optimal solution.

Anomaly detection is the most common goal of AIOps applications.
60% of open-source AIOps applications’ primary goal is to detect anomalies.
Monitoring, anomaly prediction, root cause analysis, and providing AIOps
infrastructure are the other common goals of AIOps applications. Only 5% of
projects provide a public AIOps dataset, and only 1% of projects provide self-
healing features. Our results align with the findings of Notaro et al. (2021b),
where they observe that 62% of AIOps papers are associated with failure
management, including failure detection, failure prediction, and root cause
analysis.

AIOps applications suffer from more code quality issues than ma-
chine learning and general-purpose-based projects. Considering our
results in Section 3.3.3, AIOps applications have a higher number of quality
issues (e.g., bugs and code smells) compared to the baselines. We list the most
common violated issues in AIOps applications in Tables 9 and 10. AIOps prac-
titioners may pay attention to these issues in their applications and address
them to reduce the risk of future problems.
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4.2 AIOps: Challenges and future directions.

More benchmarking datasets could be designed for AIOps appli-
cations. We find that only 5% of the projects aim to design and publish
AIOps benchmark datasets. As also mentioned by Bogatinovski et al. (2021),
there is a lack of good and public AIOps benchmarks, where different AIOps
approaches could be compared. As most of the AIOps applications use logs,
performance metrics, and network-traffic data as their input data source, we
suggest AIOps researchers design and publish real-world and public datasets
of these data types so other AIOps practitioners and researchers could leverage
them in their applications. In the future, we also plan to design a benchmark-
ing framework that can help future work generate customized datasets.

Natural Language Processing (NLP) techniques can receive more at-
tention in AIOps in the coming years. Our results in Section 3.2 indicate
that only 2% of the studied projects use NLP techniques. On the other hand,
approximately one-third of the projects use logs as their input data. Prior
research has shown that logs can be approximately represented as natural lan-
guage text since the logs are generated by logging statements in the source
code written by humans (Hindle et al., 2016). Other works also illustrate that
logs are even more predictable and repetitive than natural languages, such as
English (He et al., 2018a; Tu et al., 2014; Yao et al., 2020). Hence, we sug-
gest that AIOps projects can benefit from leveraging the advances in NLP
techniques to analyze and model the input data such as logs.

More attention should be paid to increasing automation and reduc-
ing human interventions in AIOps solutions. Regarding the goal of the
studied projects, most projects aim to detect and predict anomalies, monitor,
and analyze the root causes of failures. All these systems need human inter-
ventions when the goal is reached. For example, when an anomaly is detected,
an operator should decide the next required action to handle the situation.
As demonstrated in Figure 7, only 1% of projects aim for self-healing, mean-
ing that the system can make necessary changes when needed without hu-
man interventions. We believe AIOps solutions should move toward becoming
more automated, detecting/predicting the incidents and resolving them au-
tonomously. Self-healing techniques may get more attention and be integrated
with detection/prediction techniques (Ding et al., 2012, 2014; Lou et al., 2017).

Paying more attention to simple details can increase the quality of
AIOps solutions. We identify the most common issues in AIOps projects in
Section 3.3.3. When looking at the most violated rules, some of them are chal-
lenging and time-consuming to fix and need structural changes in code, such as
python:S3776 (cognitive complexity of functions) and python:S1192 (duplica-
tion of string literals). On the other hand, some are easy to handle. 3 of the 10
most violated rules are related to naming conventions. Only following the nam-
ing conventions can reduce the number of issues heavily. Furthermore, rules
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Table 13: The top-5 languages of AIOps and baseline projects with the new
filtering criterion.

AIOps ML General
Language Usage (%) Language Usage (%) Language Usage (%)

Python 65.9 Python 81.4 Python 18.6
Java 10.6 C++ 2.3 JavaScript 15.3
Go 4.7 HTML 2.3 Java 7.7
HTML 3.5 JavaScript 1.9 Typescript 6.6
JavaScript 2.4 MATLAB 1.4 C 6.0

such as python:S2208 (using wildcard imports) and python:S1481 (removing
unused variables) are quick to determine and easy to fix. Identifying the most
common issues help practitioners and researchers in the field to become aware
of them and take measurements to reduce them.

Most of the tools and techniques used for the quality assurance of
machine learning systems can also be used for AIOps solutions. Our
results indicate that a high proportion of issues in ML and AIOps techniques
are the same (90% of most violated rules and 90% of most violated rule cate-
gories are shared). Besides, the quality assurance of ML systems has received
special attention in the previous years, and different approaches have been
built to preserve the quality of ML-based systems (Braiek and Khomh, 2022;
Nakajima, 2018; Nikanjam et al., 2021, 2022; Poth et al., 2020; Tambon et al.,
2023). Hence, we believe most of the developed tools and techniques for quality
assurance in ML systems can be utilized in AIOps techniques. Applying these
tools and techniques may reduce the quality issues mentioned in Section 3.3.3.

Open-source AIOps solutions can benefit from broader use-cases
and scenarios. As described in previous works (Dang et al., 2019; Prasad
and Rich, 2018), AIOps can encompass a wide range of scenarios, from pre-
dicting the future status of systems to improving the productivity of engineers.
However, the scope of current AIOps projects available on GitHub appears to
be limited, focusing primarily on certain aspects with a skewed distribution.
For example, we find that anomaly detection is the dominant goal of AIOps
projects with 60% of use cases. To address this disparity, AIOps researchers
and practitioners may pay more attention to other AIOps scenarios, such as
minimizing engineers’ tedious tasks and better system automation. This can
contribute to advancing this interdisciplinary field and realizing its full poten-
tial across diverse use cases and applications.

4.3 The impact of using a stronger filtering criterion.

To assess the robustness of our findings, we add an extra filter to both AIOps
and baseline projects and discuss the main findings of RQ1 and RQ3. The
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Fig. 12: The cumulative distribution of the creation time of AIOps and baseline
projects with the new filtering criterion.

Table 14: Detailed results of Mann–Whitney U and Cliff’s delta tests on
projects’ GitHub metrics with the new filtering criterion.

Metric AIOps vs. ML AIOps vs. General
p-value effect size p-value effect size

Stars 0.02 ** 0.00 ***
Forks 0.01 ** 0.00 ***
Pull requests 0.02 ** 0.81 -
Size 0.14 - 0.00 ***

Mann–Whitney U results are shown in p-value columns. If the
sets have statistically different distributions, the Cliff’s delta re-
sults are shown in effect size columns.
*: negligible effect **: small effect ***: medium effect

intention is to confirm that the obtained results are meaningful insights and
are robust. To do so, we analyze the distribution of the AIOps projects based
on their number of stars. Then, we use the elbow curve to determine a threshold
to filter the projects, similar to prior work which uses the elbow curve to filter
the AutoML tools to be studied (Majidi et al., 2022). Specifically, we create
a line chart of the sorted number of stars of the projects and find the elbow
point. The elbow point is the distinct bend or “elbow” in a line chart that
indicates a change in the distribution (Kodinariya et al., 2013). We find that
the elbow point in the number of stars of AIOps projects is 5. Hence, we
add extra filtering and only consider projects that have the number of stars
greater or equal to 5 (stars: >= 5). We also add this filtering criterion to the
ML and General baselines to ensure consistency. Adding this criterion reduces
the number of AIOps projects from 119 to 85, ML baseline from 383 to 215,
and General baseline from 385 to 183.

Results of RQ1 with the new filtering criterion. We report the main
results of RQ1 in regard to the new filtering criterion. Figure 12 presents
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Fig. 13: Box plots of GitHub metrics for AIOps and baseline projects with the
new filtering criterion.

the percentage of projects created in and before each year for AIOps and
baseline projects. As illustrated, AIOps projects are growing faster than ML
and General baselines, which is also the same trend in our initial results (cf.
Figure 2).

Table 13 shows the top-5 most common languages in the AIOps and base-
line sets. The dominant programming language in AIOps projects is Python,
with usage of 65.9%, followed by Java with 10.6%. The most used language
in the ML projects is Python with 81.4%, and the most common language in
General baseline is Python with 18.6%, followed by JavaScript with 15.3%.
All these trends are also visible in our initial results (cf. Table 2).

Figure 13 depicts the box plots of some of the GitHub metrics for the
AIOps and baseline projects. Table 14 illustrates the p-value and effect size of
the same metrics of AIOps projects compared to the baselines. Regarding the
number of stars and forks, AIOps projects demonstrate higher popularity than
the baselines, as evidenced by both the median and mean values. The median
value of stars in AIOps, ML, and General sets are 33, 20, and 13, respectively.
Also, the median value of forks in AIOps, ML, and General sets are 14, 8, and
5, respectively.
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Table 15: Detailed results of Mann–Whitney U and Cliff’s delta tests on
projects’ code quality with the new filtering criterion.

Metric AIOps vs. ML AIOps vs. General
p-value effect size p-value effect size

Bugs 0.01 ** 0.01 **
Code smells 0.00 ** 0.00 ***
Technical debt 0.00 ** 0.00 ***
LOC 0.02 ** 0.01 **

Mann–Whitney U results are shown in p-value columns. If the sets
have statistically different distributions, the Cliff’s delta results are
shown in effect size columns.
*: negligible effect **: small effect ***: medium effect

Table 14 shows that the number of stars and forks have a small effect size
compared to the ML baseline and a medium effect size compared to the General
baseline. Considering the number of pull requests, as shown in Figure 13c,
AIOps projects experience more of them, with a median value of 2, compared
to 0 in ML and 1 in General. The mean value of pull requests in AIOps projects
is also much higher than the baselines. Statistical tests suggest that the effect
size of pull requests in AIOps compared to the ML baseline is small, and
there is not a significant difference between AIOps and the General baseline.
According to 13d, AIOps projects have a larger size compared to the baselines.
With a median size of 9.0 MB in AIOps projects, they tend to be 9 times larger
than General baselines with a median size of 1.1 MB. Statistical tests suggest
that the difference between AIOps and General baseline in terms of their size
is medium. However, there is no significant difference between AIOps and ML
baseline. All the mentioned results and trends are consistent with our initial
results (cf. Figure 3 and Table 3). In summary, when we apply a stricter
project filtering criterion, our main findings in RQ1 still hold, indicating the
robustness of our findings.

Results of RQ3 with the new filtering criterion. We also report the
main results of RQ3 with the more mature projects that are selected with the
stricter filtering criterion. Figure 14 shows the box plots of some of the code
quality metrics extracted from SonarQube for AIOps and baseline projects.
Please check Table 7 for the definitions of these code quality metrics. Besides,
Table 15 presents the p-value and effect size of the code quality metrics of
AIOps projects compared to the baselines. As shown in Figure 14, AIOps
projects experience more bugs and code smells than the baselines. The median
amount of bugs in AIOps is 3, while it is 1 in ML and 0 in General baselines.
Besides, the median amount of code smells is 57 in AIOps, while it is 27 in
ML and 9 in General baselines. Furthermore, the amount of technical debt
in AIOps projects is much higher than the baselines (the median value of 6.5
hours for the AIOps set, 2.9 hours for the ML set, and 1.2 hours for the General
set). The LOC in AIOps projects is also higher than the baselines.
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Fig. 14: Box plots of code quality metrics for AIOps and baseline projects with
the new filtering criterion.

While all these trends are also visible in the initial results (cf. Figure 9),
it seems that the more mature AIOps projects (i.e., the projects with the new
filtering criterion) have more LOC and thus more issues in terms of bugs, code
smells, and technical debt.

Considering the statistical tests presented in Table 15, we can observe that
AIOps projects are statistically different from both baselines in the mentioned
quality metrics (i.e., number of bugs, number of code smells, technical debt,
and lines of code). Besides, the effect sizes of the differences are small or
medium. Compared to the initial results presented in Table 8, a larger effect
size can be seen while comparing AIOps and General baseline.

We also report the most violated rules and rule categories in Table 16.
These rules and rule categories are defined in Tables 11 and 12, respectively.
Comparing the new criterion (Table 16) with the initial criterion (Tables 9
and 10), no change is seen for the AIOps projects. The top-5 rules and rule
categories remain the same, with similar weight (i.e., W(%) column in Ta-
ble 16) and usage (i.e., N(%) column in Table 16). Another finding (alike to
the initial results) is the similarity between AIOps and ML projects in terms of
their quality issues. Overall, the results of our stricter filtering criterion show



Studying the Characteristics of AIOps Projects on GitHub 41

Table 16: The top-5 violated SonarQube rules and tags (rule categories) for
AIOps projects and the baselines with the new filtering criterion. “W” repre-
sents the weight of tags, and “N” is the percentage of projects with that tag.

AIOps ML General
Rule W(%) N(%) Rule W(%) N(%) Rule W(%) N(%)

python:S117 17.1 58.7 python:S117 17.5 60.7 python:S117 3.7 15.3
python:S125 12.7 66.7 python:S125 14.4 64.2 Web:S5254 3.2 24.7
python:S1192 6.7 65.3 python:S1192 7.8 60.2 python:S125 2.9 18.0
python:S905 4.8 22.7 python:S1481 6.3 57.7 javascript:S1117 2.8 18.0
python:S1481 3.9 60.0 python:S905 5.5 23.9 Web:S1827 2.7 10.0

Tag W(%) N(%) Tag W(%) N(%) Tag W(%) N(%)

convention 25.7 76.4 unused 25.0 85.1 unused 12.1 58.0
unused 24.2 93.6 convention 22.2 69.2 convention 8.9 34.7
design 9.1 79.1 design 7.1 63.2 pitfall 7.3 44.7
cwe 8.3 66.4 cwe 5.8 59.2 suspicious 7.0 50.0
suspicious 5.6 66.4 suspicious 5.1 55.7 accessibility 4.8 32.7

that our initial findings are robust, as the trends and main findings remain
the same.

5 Threats to Validity

This section discusses threats to the validity of our results.
External validity. In this work, we identified and studied a set of AIOps
projects on GitHub. These projects may not cover all AIOps projects on
GitHub, those hosted on other platforms, or private projects. Besides, as
“AIOps” is a new terminology, not all AIOps projects mention the keyword of
“AIOps” in their repositories. Future work examining other sources of AIOps
projects (e.g., those published in the literature or closed-source projects) can
complement our results. To broaden the generalizability of our work and max-
imize the coverage of AIOps projects, we follow a process that combines au-
tomated search (two rounds), keyword expansion, manual verification, and
filtering. Two authors of the paper carefully examined each of the candidate
projects to select the ones for our study. The third author steps in to re-
solve any disagreement. Nevertheless, future work can leverage our replication
package and extend our study by analyzing more AIOps projects.

To select the projects, we consider repositories with stars and forks greater
than or equal to 1. We selected this criteria to have a balance between filtering
the low-bar projects and having a proper portion of projects to study. Having
stricter filtering criteria would heavily reduce the number of AIOps projects,
as there are not many AIOps projects available on GitHub. However, having
low filtering criteria could potentially lead to biased results and lack of robust-
ness in the findings. To address this concern and enhance the robustness of
our findings, we conducted a sensitivity analysis (cf. 4.3). In this sensitivity
analysis, we validated our results using a stricter filtering criterion, provid-
ing additional evidence to support the reliability of our findings. The analysis
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shows that our results remain consistent and robust even with stricter filtering
criteria.

We also collect the ML baseline based on two keywords of “machine learn-
ing” and “deep learning”. However, having these two keywords may not include
all machine learning repositories on GitHub. Future work can expand our re-
sults by analyzing more projects extracted from more diverse keywords.
Internal validity. We study the code quality metrics of the AIOps projects
using a set of metrics (e.g., code smells). Nevertheless, these metrics may not
accurately represent the quality of the projects. To reduce the effect of this
threat, we leveraged a variety of metrics that represent different aspects of
each project. These metrics have also been used in other articles to measure
code quality (Businge et al., 2019; Lenarduzzi et al., 2019; Tan et al., 2018).

We rely on the code issues detected by SonarQube to answer our RQ3.
We choose SonarQube since it is one of the most used tools for analyzing
code quality (Lenarduzzi et al., 2017, 2018). We are aware that SonarQube
might have false positives or false negatives. In order to evaluate the accuracy
of code quality metrics extracted through SonarQube, we conduct an manual
verification. We select the 10 most violated SonarQube rules in AIOps projects
presented in Table 11. For each of the rules, we randomly select 20 issues from
20 different projects (from all the AIOps and baseline projects) where that
rule violation is present. Therefore, for each of the 10 rules,20 instances are
analyzed, and totally we analyze 200 issues. In our analysis, we look for false
positives (i.e., any issue that SonarQube has detected but is not actually an
issue). We did not find any false positives in the analyzed issues. Our results
align with SonarQube’s claim that it has zero false-positives for code smells
and bugs9.
Construct validity. To expand our set of AIOps projects, we perform pattern
mining and choose 4 out of 194 pairs of keywords. We choose these 4 pairs of
keywords after a systematic process and based on the discussions between the
authors, in order to reduce the bias. All of the keywords are among the most
frequently used keywords.

To answer RQ2, we use qualitative analysis to categorize the input data,
analysis techniques, and goals of each AIOps project. Our results may be bi-
ased by personal deductions like any other qualitative study. In order to mit-
igate this threat, two authors of the paper performed the qualitative analysis
carefully and followed a 5-step process to deduce the categories. We achieve a
Cohen’s kappa value of 0.84 which shows a strong and reliable agreement.

6 Related Work

This work studies AIOps projects on GitHub and analyzes the quality of the
projects using SonarQube. Thus, we discuss the related work on the following
three aspects.

9https://docs.sonarqube.org/latest/user-guide/rules/

https://docs.sonarqube.org/latest/user-guide/rules/
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6.1 AIOps solutions.

In recent years and with the emergence of AIOps, more and more studies have
been conducted in this field. Prior works have come up with different solutions
for various problems. Anomaly detection (e.g., Brown et al., 2018; Nedelkoski
et al., 2019b), failure prediction (e.g., Notaro et al., 2021a; Zhao et al., 2021),
ticket management (e.g., Xue et al., 2016, 2018), self-healing (e.g., Ding et al.,
2014; Lou et al., 2013, 2017), and issue diagnosis (e.g., Luo et al., 2014) are
among the most studied topics in AIOps solutions. We divide AIOps papers
by their goals into five sections and discuss them in more detail.
Anomaly Detection. Anomaly detection is one of the most common tasks
in AIOps (Bogatinovski et al., 2021). Previous studies perform anomaly de-
tection using different approaches; for example, Fu et al. (2009) and Sharma
et al. (2013) use clustering to find the anomalies, Liu et al. (2015) and Xu et
al. (2009) use tree-based models, and Brown et al. (2018) and Du et al. (2017)
use neural networks to perform the task. To perform anomaly detection, differ-
ent data sources have been used. Even though event logs (Beschastnikh et al.,
2014; Brown et al., 2018; Du et al., 2017; Fu et al., 2009) are the most common
data source, other sources such as performance metrics (e.g., Sharma et al.,
2013; Su et al., 2019), network traffic (e.g., Lakhina et al., 2004, 2005), and
traces (e.g., Nedelkoski et al., 2019a,b) have also been employed.
Failure Prediction. Predicting failures is also one of the most common tasks
of AIOps (Notaro et al., 2021a). Failure prediction can be divided into two
groups of hardware failures and system failures. Compared to anomaly detec-
tion tasks where various data sources have been employed, in failure prediction,
usually only the performance metrics of the systems are used. Performance
metrics are measurements that aid in identifying and analyzing system bottle-
necks and diagnosing issues. Some of the most popular performance metrics
include CPU utilization, memory utilization, response time, throughput, I/O,
and network latency. Zhao et al. (2021) use different system metrics, such as
CPU usage and the number of live threads of the system, to predict perfor-
mance anomalies at run-time. Lin et al. (2018) leverage temporal data (e.g.,
CPU and memory utilization metrics, alerts) and spatial data (e.g., rack lo-
cations) and construct MING, a deep learning-based approach. MING is able
to rank the faulty nodes of the cloud system. MING is applied to the main-
tenance of one of the cloud service systems in Microsoft. Li et al. (2020b) try
to enhance the performance of MING, e.g., by enriching the data represent-
ing node failures through a novel oversampling approach. They also discuss
some criteria for the successful adoption of AIOps solutions, including trust,
interpretation, maintenance, scalability, and in-context evaluation.
Root Cause Analysis. Root cause analysis is the approach of identifying
the underlying causes of problems or issues in the system. The process in-
volves identifying and analyzing the factors that contributed to the problem,
determining the root cause, and developing solutions to address the underlying
issue. Ding et al. (2021) leverage the generated alarms of a software system
and find the root causes of the issues in an online manner. Wang et al. (2021)
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implement a graph-based algorithm and construct GROOT to perform root
cause analysis. Their approach uses a combination of different event data (i.e.,
performance metrics, logs, and developer activities). GROOT is deployed in
the production services of eBay. Zhang et al. (2021) propose a root cause anal-
ysis framework that also leverages different data sources: Key Performance
Indicators (KPIs), logs, and topology data. Their primary model is a hierar-
chical Bayesian network that helps handle novel types of root causes.
Incident Management. Incident management refers to the process of iden-
tifying, analyzing, and resolving incidents that occur within a software system.
Although the majority of organizations have established unique methods for
handling incidents, critical service incidents still happen unexpectedly, and the
incident system fails to mitigate them. Chen et al. (2020b) provide an overview
of incident management. They analyze the incident management practices at
Microsoft over two years and identify the distribution of incident severities
for each section (e.g., network, database). Saha et Hoi. (2022) leverage past
incident root cause analysis reports to manage the incidents. They present an
incident causation analysis engine that extracts information from previous root
cause analysis reports and use that knowledge for new incidents. They employ
pre-trained NLP models over reports collected over a few years at Salesforce.
Li et al. (2022b) propose an AIOps framework for incident detection. Their
framework consists of four main parts: multi-aspect detection (where it is able
to automatically identify the combinations of different data types such as logs
and performance metrics), proactive detection (where it can proactively search
for future hardware and software failures), incident refinement (where it can
provide a global view of the incident and prioritize high-impact incidents), and
incident enrichment (where it can locate the faulty scope).
AIOps Literature Reviews. There exist two articles that survey existing
AIOps studies. Notaro et al. (2021b) conduct a systematic mapping study to
identify past research in AIOps. They provide a taxonomy of AIOps papers
in order to investigate the trends and also a comparison of AIOps papers for
specific problems. Their findings demonstrate an on-growing research inter-
est in the field of AIOps, particularly for downstream tasks such as anomaly
detection and root cause analysis. According to their paper, the majority of
studies (more than 60%) are related to failure management (e.g., failure pre-
diction and failure detection). Resource management and scheduling are two
other popular areas in AIOps. To understand the trends in AIOps articles,
similarly, Rijal et al. (2022) perform a literature review about AIOps works.
Their findings support the growing interest in AIOps (Notaro et al., 2021b).
Their results count several benefits of AIOps: better monitoring of IT work,
efficient time saving, improved human-AI collaborations, proactive IT work,
and faster Mean Time To Resolve (MTTR). The development of AIOps solu-
tions also faces a number of difficulties, including doubt about the efficiency
of AI and ML, low-quality data, identifying the proper use cases, and tra-
ditional engineering approaches. Their paper concludes the need for further
research to improve human and AIOps interaction in order to enhance human
productivity. The results of our work can complement these literature reviews.
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However, none of the existing work studies real-world AIOps projects. Dif-
ferent from these studies, in this work, we perform an empirical study to
understand the practices and characteristics of real-world AIOps projects on
GitHub.

6.2 Characterizing GitHub projects.

As the biggest hosting service for open-source software, GitHub has been stud-
ied remarkably in the past years. Some studies focus on the best approaches
for finding the most prominent repositories on GitHub (Dabic et al., 2021;
Kalliamvakou et al., 2014, 2016). Many studies also have used GitHub as a
source for mining software repositories (Businge et al., 2019; Coelho et al.,
2018; Guzman et al., 2014; Horschig et al., 2018; Kallis et al., 2021; Lopes
et al., 2017; Manes and Baysal, 2021; Subramanian et al., 2020; Vadlamani
and Baysal, 2020; Wessel et al., 2018). For example, Vadlamani et al. (Vadla-
mani and Baysal, 2020), along with Subramanian et al. (Subramanian et al.,
2020) and Horschig et al. (Horschig et al., 2018) try to characterize the devel-
opers of open-source software. As another example, Kallis et al. (Kallis et al.,
2021) try to predict the issue types of projects. More similar to our study,
Ghrairi et al. (Ghrairi et al., 2018) study the state of Virtual Reality (VR)
projects extracted from GitHub. In another work, Coppola et al. (Coppola
et al., 2019) characterize the popularity of Kotlin in Android projects by an-
alyzing 1,232 applications on GitHub. However, as far as we know, no studies
have been conducted yet on the subject of AIOps. Our work is the first study
that uses GitHub to characterize and analyze AIOps projects.

6.3 Analyzing code quality using SonarQube.

SonarQube is one of the most popular static code analyses used both in
academia (Lenarduzzi et al., 2017, 2018) and industry (Vassallo et al., 2020).
Previous research has conducted many analyses on the code quality of open-
source software projects using SonarQube. Businge et al. (Businge et al., 2019)
use SonarQube and analyses the source code of 119 applications to find their
number of bugs. In another work, Tan et al. (Tan et al., 2018) study 9 Apache
software systems written in Python to investigate their technical debt. Lenar-
duzzi et al. (Lenarduzzi et al., 2019) also investigate the technical debt of 33
Apache systems written in Java. They find that the amount of code smell is
much higher than bugs or vulnerabilities in their set of projects. They also
report that the code smells with the severity level major take the longest
time to get fixed. Compared to the mentioned studies, our paper analyzes the
quality of 6,101 projects, which is much higher than in the previous studies,
making our results more confident and robust.
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7 Conclusion

This work studies the characteristics of AIOps projects on GitHub and con-
ducts a comparative analysis with two baseline sets (ML and General projects).
We combine both quantitative and qualitative analyses to understand the cur-
rent state of AIOps solutions. Specifically, we illustrate the state of AIOps
projects on GitHub in RQ1, observing that they are relatively new and have
been growing rapidly in recent years. We determine the most common input
data, techniques, and goals of AIOps solutions in RQ2. By uncovering these
patterns, researchers and practitioners can learn from successful approaches
and adopt optimal AIOps solutions for their specific application scenarios. We
then investigate the quality of AIOps projects in terms of code quality and
compare them to the baselines in RQ3. We observe that the quality of AIOps
projects is poorer compared to the baselines. Our findings highlight the need
for future efforts to enhance AIOps practices. For example, addressing weak
aspects such as self-healing and reducing the ad-hocness of coding can lead to
improved AIOps quality.

Our study could be extended in different ways. First, we study the AIOps
projects publicly available on GitHub. However, there might be differences be-
tween open-source projects and closed-source projects which are implemented
for private datasets in companies. Thus, one extension to our study could be
to gather and analyze the industrial AIOps solutions and report any similar-
ities and differences with AIOps projects on GitHub. Second, based on our
results regarding the inputs, techniques, and goals of AIOps solutions, fu-
ture work may develop a pipeline to automate or augment the development
of AIOps solutions. Third, we discussed the potential of integrating existing
quality assurance techniques from machine learning systems into AIOps so-
lutions. Hence, future research could implement these techniques for AIOps
solutions, examining their impact on enhancing AIOps code quality. Finally,
conducting a future study that includes interviews with AIOps researchers and
practitioners could serve to validate and extend the findings of our work.
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