
1

Locating Performance Regression Root Causes
in the Field Operations of Web-based Systems:

An Experience Report
Lizhi Liao, Jinfu Chen, Heng Li, Yi Zeng, Weiyi Shang, Catalin Sporea, Andrei Toma, Sarah Sajedi

Abstract—Software developers usually rely on in-house performance testing to detect performance regressions and locate their root
causes. Such performance testing is typically resource and time-consuming, making it impractical to conduct when the software is
delivered in fast-paced release cycles. On the other hand, the operational data generated in the field environment provides rich
information about the performance of a software system and its runtime activities. Therefore, this work explores the idea of leveraging
the readily-available field operational data to locate the root causes of performance regression instead of running expensive
performance tests. However, due to the ever-changing workloads from the end users and the noise from the field, directly analyzing
performance metrics such as response time of the system may not be able to help locate the root causes of performance regressions.
In this paper, we report our experience of designing and adopting an approach that automatically locates the root causes of
performance regressions while the software systems are deployed and running in the field. First, our approach uses black-box
performance models to capture the relationship between the performance of a system and its runtime activities. Then, our approach
analyzes the performance models and uses statistical techniques to suggest the problematic system runtime activities (i.e., the root
causes) that are related to a performance regression. Our evaluation considered three open-source projects and one industrial
product. In the three open-source systems, we find that our approach can successfully locate the root causes of all arbitrarily injected
synthetic performance regressions. Our approach has successfully detected and located the root causes of three performance
regressions in an industry system and it has been adopted by our industrial partner and used in practice on a daily basis over a
12-month period. In addition, we share the challenges that we encountered during the design and adoption of our approach, how we
address those challenges, and the lessons that we learned during the process. We believe that our novel approach together with our
documented experience can benefit practitioners and researchers who wish to leverage the field-operation data of a software system to
conduct performance assurance activities.

Index Terms—performance regression, performance regression root causes, field testing, experience report, industry case study.

F

1 INTRODUCTION

Large-scale software systems, such as web-based systems
like Facebook and Google, have become an indispensable
part of people’s daily lives. Driven by the need for pro-
viding uninterrupted services to millions or even billions
of users around the world, such systems usually need
to meet stringent performance requirements. Performance-
related problems in such systems often result in financial
losses [3, 32, 52, 89]. For example, it is estimated that
adding merely one more second to load an Amazon.com
page could cost the company as much as $1.6 billion in
its annual revenue [1]. Therefore, performance assurance
activities (e.g., performance testing) are a crucial step to
avoid performance regressions (i.e., when a new version

• Lizhi Liao, Yi Zeng, and Weiyi Shang are with the Department of Com-
puter Science and Software Engineering, Concordia University, Canada.
E-mail: {l lizhi, ze yi, shang}@encs.concordia.ca

• Jinfu Chen is with Centre for Software Excellence, Huawei Technologies,
Canada.
E-mail: jinfu.chen1@huawei.com

• Heng Li is with the Département de génie informatique et génie logiciel,
Polytechnique Montreal, Canada.
E-mail: heng.li@polymtl.ca

• Catalin Sporea, Andrei Toma, and Sarah Sajedi are with ERA Environ-
mental, Canada.
E-mail: {steve.sporea, andrei.toma, sarah.sajedi}@era-ehs.com

of the system has worse performance than the previous
versions). For example, Mozilla has a policy that requires all
performance regressions to be reported and resolved [13].

Software practitioners typically conduct in-house perfor-
mance testing prior to the deployment of every new release
of a software system, in order to ensure that potential per-
formance regressions are detected [62, 97]. If a performance
regression is detected, the results from the performance
testing can provide useful information to guide developers’
efforts in identifying and fixing the root causes [58]. How-
ever, performance testing is usually very costly, requiring
expensive resources, complex environment configuration,
and excessive execution time [39, 62]. More and more soft-
ware systems are delivered along fast-paced release cycles
(e.g., a new version is released every few hours) [60, 66].
Hence, it is often challenging, if not infeasible, to detect and
locate the root causes of performance regressions through
traditional in-house performance testing.

Prior research in software performance often utilizes
statistical techniques (e.g., control charts) to compare and
analyze the load testing results (e.g., performance metrics)
to detect performance regressions and locate the corre-
sponding root causes [23, 72, 81, 91]. In addition to load
tests, unit tests are also leveraged in prior studies [37, 58, 70]
to locate performance regression root causes. However, load
testing usually requires extensive resources and a long time

2

to execute, while unit tests cannot take the impact of large
and varying workloads into consideration. On the other
hand, there is also prior research that directly uses field data.
Nevertheless, their located root causes are often coarse-
grained (e.g., only at service level) [24, 61, 78, 99], or only
target specific performance regression patterns [24].

In this paper, we share our experience of leveraging
field-operation data to automatically locate the root causes
of performance regressions in a large-scale industrial soft-
ware system. In particular, instead of running the costly
and time-consuming performance tests in a short release
cycle (e.g., two weeks), the performance of the system is
monitored and directly evaluated during the field operation
of the system (i.e., when end users are using the service
delivered by the system). Such an automated approach can
complement or even replace typical in-house performance
testing when testing resources are limited (e.g., in an agile
environment) or when field workloads are difficult to be
reproduced in the testing environment. Performance regres-
sions are detected by comparing the performance of the new
release with the old release (e.g., in A/B testing [100] or
canary releasing [2] manner). Specifically, when a new ver-
sion is released, we build performance models that capture
the relationship between the performance of the system and
the system’s runtime activities that are recorded in the web-
access logs of the system. We then analyze the difference
between the new performance model and the performance
model from the previous release, to identify the system
activities that contribute to such difference. The identified
system activities are considered as the root causes of the
performance regressions.

The evaluation of our approach is conducted on both
open-source and industrial projects. We apply our approach
on three open-source projects (i.e., TeaStore, OpenMRS, and
CloudStore), with arbitrarily injecting synthetic performance
regressions to different locations in these projects. Our re-
sults show that our approach can effectively locate the root
causes of the injected ones in the open-source systems. In
addition, our approach has been adopted by an industrial
software system (i.e., ES), and used on a daily basis while
successfully detecting and locating the root causes of real-
life performance regressions. We discuss the challenges that
we encountered during the design and adoption of our
approach in an industrial environment. For each challenge,
we share our solution to address the challenge and what
we learned in the process. We believe that our experience
and learned lessons can assist software practitioners and re-
searchers in leveraging field-operation data in performance
assurance activities.

The main contributions of this paper are:
• We propose an approach that can automatically locate

the root causes of performance regressions without the
need for resource and time-consuming performance
testing.

• Our experimental results show that we can adopt black-
box machine learning models to assist developers in
identifying and fixing the root causes of performance
regressions.

• We share the challenges and lessons learned from the
successful adoption of our approach in industry, which
can provide insights for researchers and practitioners

who are interested in locating the root causes of perfor-
mance regressions using the field-operation data.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the background of locating performance
regression root causes for an industrial system. Section 3
surveys prior research related to this paper. The challenges
and corresponding solutions are discussed in Section 4.
Section 5 outlines our approach for locating performance
regression root causes in the field. Section 6 and Section 7
respectively present our results of applying our approach
on three open-source subject systems and a large-scale
industrial system. Section 8 summarizes the lessons that
we learned from the addressing the faced challenges and
successful adoption of our approach. Section 9 discusses the
threats to the validity of our findings. Finally, Section 10
concludes the paper.

2 MOTIVATIONAL BACKGROUND FROM INDUS-
TRIAL PARTNER

The ES system. ES1 is a commercial software system that
provides government-regulation (e.g., Regulations 29 CFR
19102) related reporting services. ES is the market leader
of its domain and its service is widely used by enterprises
around the world. In addition, the system has over ten years
of history with more than two million lines of code that
are based on Microsoft .Net. It is developed and operated
by a global company with a development team of 20 to
30 software engineers. ES is deployed on Microsoft Azure
and operated by the internal operation team within the
company. Due to a Non-Disclosure Agreement (NDA), we
cannot reveal additional details about the hardware envi-
ronment and the usage scenarios of ES.

Due to the importance of the service, the stakeholders
of ES take its performance as a critical matter. In partic-
ular, the stakeholders of ES would like to be aware of
any performance regressions that are introduced in a new
release of the system. On the other hand, the development
and maintenance of ES follow an agile process where the
software system has a new release every two weeks. Such a
short release cycle of ES brings challenges in the detection
of performance regressions and the localization of their root
causes.

In order to adapt to the fast release pace of ES, the
developers do not conduct any in-house performance test-
ing before a release, due to the high demand for resources
and the long duration. Instead, ES’s performance is tested
in a field A/B testing manner, i.e., the performance of a
new release is actively monitored and compared with an
existing stable release, in order to quickly identify potential
performance regressions based on the field performance
data collected during operation by the end users.
Existing (baseline) approach for locating performance
regression root causes. Since ES’s performance is evalu-
ated in the field with end users, one cannot put exten-
sive instrumentation to monitor the resource cost for each

1. ES is a codename for the system and has no practical meaning.
Due to the NDA, we cannot disclose the real name of the system.

2. https://www.osha.gov/laws-regs/regulations/standardnumber/
1910

https://www.osha.gov/laws-regs/regulations/standardnumber/1910
https://www.osha.gov/laws-regs/regulations/standardnumber/1910

3

activity of the system. Instead, one may leverage system-
level performance metrics, such as CPU usage, to detect
performance regressions. However, such detection results
cannot reveal the root causes of performance regressions in
the source code. Since ES is a web-based system, by default,
the web-access logs are produced during system execution.
Therefore, the existing (baseline) approach leverages the
response time that is recorded in each web-access log to
locate the performance regressions to the associated web
requests.

In particular, the existing (baseline) approach adopts
a pair-wise comparison approach (similar to prior re-
search [86]) that compares the response time of the same
types of web requests in the new and old releases. The
baseline approach parses the collected web-access logs into
timestamps, types, and response times. For example, a
line of web-access log “[2020-03-27 20:23:07] GET /open-
mrs/ws/rest/v1/person/ HTTP/1.1 200 53” will be parsed
into timestamp “2020-03-27 20:23:07”, the corresponding
web request type “GET /openmrs/ws/rest/v1/person/”,
and the response time “53 milliseconds”. The approach
leverages Mann-Whitney U test [77] to determine whether
there exists a statistically significant difference between the
response time of the same types of web requests in the
new and old releases. In addition, the existing (baseline)
approach uses effect sizes, i.e., Cliff’s Delta [40], to quantify
the magnitude of the difference and decide whether the
difference in response time corresponds to a performance
regression or an improvement. In particular, if the effect size
of the difference is large (|d| > 0.474) and the new version’s
average response time is larger than the old version, the
corresponding web request would be located as the root
cause of the performance regression.
Limitation of the existing (baseline) approach. However, as
also found by prior research [86], such pair-wise comparison
approaches often lead to false-positive results due to the
environmental and workload noises. The situation is even
worse for ES, since the data is from the field where the
workloads of the new and old versions of ES are often
inconsistent (i.e., varying number of active end users and
usage scenarios). Comparing the response time of the new
and old versions under inconsistent workloads can lead to
even more false-positive results. In fact, with the existing
(baseline) approach, almost every new release of ES has web
requests that are incorrectly deemed to be the root causes of perfor-
mance regressions. Developers wasted much effort on examining
these false-positive results.
Our new approach for locating performance regression
root causes. Over the last year, we have explored the
challenges of locating performance regression root causes
using the end users’ data from the field (cf. Section 4). To
address these challenges, we designed and developed an ap-
proach that automatically detects and locates performance
regression root causes for ES (cf. Section 5). Our approach
has been deployed in the production environment of our
industrial partner and used to locate performance regression
root causes for ES on a daily basis.

3 RELATED WORK

In this section, we discuss prior work related to this paper.

3.1 Performance regression detection and localization

We summarize the related work of performance regression
detection and localization in Table 1, including the category
of the approach proposed in prior work, the analyzed data
type, a brief description, and their major limitations.
Performance regression detection. Prior research designs
various types of approaches to detecting performance re-
gressions. The most straightforward approaches of detecting
performance regressions are based on directly comparing
performance metric values in two versions [37, 71, 80, 81,
82]. This type of research adopts statistical techniques, such
as control charts [80, 82] and statistical tests [37, 71] to
compare and analyze performance metrics to detect per-
formance regressions. Prior research also investigates the
relationship among performance metrics and/or system
logs and uses the deviation of such relationship as in-
dicators of performance regressions [48, 57, 91, 101]. For
example, Foo et al. [48] build association rules between
performance metrics to detect performance regressions. In
addition, data-mining-based and statistical techniques like
clustering [57, 91] and linear regression models [101] are also
leveraged to mine such a relationship between execution
logs and performance metrics. Performance models (e.g.,
queue models [29], rule-based models [80, 82], and machine
learning models [44, 86, 99]) are also widely leveraged as
vehicles to capture performance regressions. For example,
Shang et al. [86] propose to cluster various types of per-
formance counters into groups and build regression models
using machine learning techniques on the clusters to detect
performance regressions. Recent research advocates the use
of smaller-scale tests, such as micro-performance bench-
marks and even functional tests, to detect performance
regressions [37, 45, 83, 90]. For example, Reichelt et al. [83]
select unit tests that are associated with code changes by
static code analysis and measure the performance of such
tests in different versions to locate performance regression
root causes.

However, prior research on the detection of performance
regressions are designed to be conducted based on data
generated from time and resource-consuming performance
testing with predefined or fixed workloads; while our ap-
proach considers the problem of the real workloads in the
field that are continuously varying and only depends on the
readily available data that is generated in the field from end
users without the need for performance testing.
Locating performance regression root causes. Depending
on different types of data source and application context, the
automated approaches for locating performance regression
root causes can be broken down into three categories: 1)
techniques based on load testing; 2) techniques based on
unit testing; and 3) techniques based on field data.

Various prior research for locating the root causes of
performance regressions is based on load testing the target
software system [23, 72, 81, 91]. Such approaches compare
the load testing results (e.g., performance metrics) from
different versions of the software system to locate per-
formance regression root causes. For example, Nguyen et
al. [81] propose to mine the regression root cause repository
that stores the past load testing results and performance
regressions. They use classification techniques (e.g., Bayes

4
TA

B
LE

1
S

um
m

ar
y

of
pr

io
rs

tu
di

es
on

pe
rfo

rm
an

ce
re

gr
es

si
on

de
te

ct
io

n
an

d
lo

ca
liz

at
io

n

A
na

ly
ze

d
da

ta
ty

pe

D
es

cr
ip

ti
on

Li
m

it
at

io
n

A
pp

ro
ac

h
Pr

io
r

Pe
rf

or
m

an
ce

Lo
gs

So
ur

ce
U

ni
t

te
st

s
Pr

ofi
li

ng
In

je
ct

ed
C

an
no

t
C

oa
rs

e-
Ta

rg
et

sp
ec

ifi
c

Ex
pe

ns
iv

e
N

ot
aw

ar
e

of
N

ot
co

ns
id

er
Ex

pe
ct

ca
te

go
ry

w
or

k
m

et
ri

cs
co

de
an

d
da

ta
tr

ac
e

lo
ca

te
gr

ai
ne

d
pe

rf
or

m
an

ce
te

st
in

g
sy

st
em

-l
ev

el
va

ry
in

g
sy

st
em

re
su

lt
s

da
ta

ro
ot

ca
us

e
ro

ot
ca

us
e

is
su

e
pa

tt
er

ns
pe

rf
or

m
an

ce
w

or
kl

oa
ds

kn
ow

le
dg

e

Ba
se

d
on

[8
0]

X
U

si
ng

co
nt

ro
l

ch
ar

ts
to

co
m

pa
re

an
d

an
al

yz
e

pe
rf

or
m

an
ce

m
et

ri
cs

to
id

en
ti

fy
pe

rf
or

m
an

ce
re

gr
es

si
on

s
X

n/
a

X
X

lo
ad

te
st

in
g

[2
9]

X
M

od
el

in
g

th
e

so
ft

w
ar

e
sy

st
em

us
in

g
a

tw
o-

la
ye

r
qu

eu
in

g
m

od
el

to
fin

d
th

e
pe

rf
or

m
an

ce
bo

tt
le

ne
ck

s
in

th
e

sy
st

em
X

n/
a

X
X

X

[8
2]

X
C

om
pa

ri
ng

pe
rf

or
m

an
ce

co
un

te
rs

ac
ro

ss
te

st
ru

ns
us

in
g

co
nt

ro
l

ch
ar

ts
to

de
te

ct
pe

rf
or

m
an

ce
re

gr
es

si
on

s
X

n/
a

X
X

[7
1]

X
X

U
si

ng
m

ac
hi

ne
le

ar
ni

ng
te

ch
ni

qu
es

(e
.g

.,
K

-M
ea

ns
,

PC
A

)
to

fin
d

th
e

be
st

su
bs

et
of

pe
rf

or
m

an
ce

co
un

te
rs

an
d

bu
ild

m
od

el
s

fo
r

pe
rf

or
m

an
ce

de
vi

at
io

n
pr

ed
ic

ti
on

X
n/

a
X

X

[9
1]

X
X

A
do

pt
in

g
hi

er
ar

ch
ic

al
cl

us
te

ri
ng

on
ti

m
e-

sl
ic

es
da

ta
co

ns
is

ts
of

ev
en

ts
an

d
pe

rf
or

m
an

ce
co

un
te

rs
an

d
an

al
yz

in
g

th
e

in
flu

en
ce

of
ou

tl
ie

rs
in

cl
us

te
rs

to
lo

ca
te

an
om

al
ou

s
ev

en
ts

X
X

X
X

[8
1]

X
M

in
in

g
re

gr
es

si
on

ro
ot

ca
us

e
re

po
si

to
ry

an
d

us
in

g
cl

as
si

fic
at

io
n

te
ch

-
ni

qu
es

to
m

at
ch

th
e

be
ha

vi
or

of
a

ne
w

ve
rs

io
n

to
pr

io
r

te
st

s
to

lo
ca

te
pe

rf
or

m
an

ce
re

gr
es

si
on

ro
ot

ca
us

es

X
X

X

[4
8]

X
A

do
pt

in
g

as
so

ci
at

io
n

ru
le

to
ca

pt
ur

e
pe

rf
or

m
an

ce
pa

tt
er

ns
an

d
en

se
m

bl
e

le
ar

ni
ng

to
de

te
ct

pe
rf

or
m

an
ce

re
gr

es
si

on
s

in
he

te
ro

ge
ne

ou
s

en
vi

ro
n-

m
en

ts

X
n/

a
X

X

[8
6]

X
C

lu
st

er
in

g
va

ri
ou

s
pe

rf
or

m
an

ce
co

un
te

rs
in

to
gr

ou
ps

an
d

bu
ild

re
gr

es
-

si
on

m
od

el
s

on
th

e
cl

us
te

rs
to

de
te

ct
pe

rf
or

m
an

ce
re

gr
es

si
on

s
X

n/
a

X
X

[7
2]

X
X

Pr
op

os
in

g
a

su
bs

um
in

g
ap

pr
oa

ch
th

at
ag

gr
eg

at
es

pe
rf

or
m

an
ce

co
st

s
re

pe
at

ed
pa

tt
er

ns
of

m
et

ho
d

ca
lls

to
id

en
ti

fy
th

e
pa

tt
er

ns
th

at
ca

us
e

pe
rf

or
m

an
ce

re
gr

es
si

on
s

X
X

X

[2
3]

X
X

Pr
op

os
in

g
a

sa
m

pl
in

g
te

ch
ni

qu
e

ca
lle

d
ho

ri
zo

nt
al

pr
ofi

lin
g

th
at

as
si

gn
s

a
co

st
to

ea
ch

so
ur

ce
co

de
ch

an
ge

ba
se

d
on

th
e

ru
n-

ti
m

e
lo

ad
te

st
in

g
hi

st
or

y

X
X

Ba
se

d
on

[5
8]

X
X

A
na

ly
zi

ng
th

e
un

it
te

st
in

g
re

su
lt

s
du

ri
ng

th
e

de
ve

lo
pm

en
t

ph
as

e
an

d
ut

ili
zi

ng
dy

na
m

ic
co

de
an

al
ys

is
te

ch
ni

qu
e

to
ex

tr
ac

t
th

e
ca

ll
tr

ee
in

fo
r-

m
at

io
n

fr
om

th
e

so
ur

ce
co

de
re

vi
si

on
hi

st
or

y
to

id
en

ti
fy

th
e

co
m

m
it

s
th

at
in

tr
od

uc
e

th
e

pe
rf

or
m

an
ce

re
gr

es
si

on
s

X
X

un
it

te
st

in
g

[7
0]

X
X

X
U

si
ng

a
co

m
bi

na
ti

on
of

se
ar

ch
-b

as
ed

in
pu

t
pr

ofi
lin

g
an

d
ch

an
ge

im
pa

ct
an

al
ys

is
te

ch
ni

qu
es

ac
ro

ss
so

ft
w

ar
e

ve
rs

io
ns

to
id

en
ti

fy
co

de
ch

an
ge

s
th

at
ar

e
po

te
nt

ia
lly

re
sp

on
si

bl
e

fo
r

pe
rf

or
m

an
ce

re
gr

es
si

on
s

X
X

[3
7]

X
X

A
do

pt
in

g
un

it
te

st
s

an
d

pe
rf

or
m

an
ce

m
ic

ro
-b

en
ch

m
ar

ks
to

lo
ca

te
pe

r-
fo

rm
an

ce
re

gr
es

si
on

in
tr

od
uc

in
g

co
de

ch
an

ge
s

X
X

[8
3]

X
X

Se
le

ct
in

g
un

it
te

st
s

th
at

ar
e

as
so

ci
at

ed
w

it
h

co
de

ch
an

ge
s

by
st

at
ic

co
de

an
al

ys
is

an
d

m
ea

su
ri

ng
th

e
pe

rf
or

m
an

ce
of

su
ch

te
st

s
in

di
ff

er
en

t
ve

rs
io

ns
to

lo
ca

te
pe

rf
or

m
an

ce
re

gr
es

si
on

ro
ot

ca
us

es

X
X

[4
5]

X
X

U
ti

liz
in

g
th

e
te

st
s

fr
om

th
e

re
le

as
e

pi
pe

lin
e

to
id

en
ti

fy
pe

rf
or

m
an

ce
is

su
e

ro
ot

ca
us

es
du

ri
ng

th
e

ra
pi

d
de

ve
lo

pm
en

tp
ro

ce
ss

X
X

Ba
se

d
on

[2
4]

X
A

bs
tr

ac
ti

ng
th

e
st

at
es

of
id

le
ne

ss
ob

se
rv

ed
in

a
ru

nn
in

g
pr

og
ra

m
ba

se
d

on
a

se
to

f
ru

le
s

de
fin

ed
de

cl
ar

at
iv

el
y

by
an

ex
pe

rt
to

di
ag

no
si

s
th

e
ro

ot
ca

us
e

of
id

le
ti

m
e

in
ap

pl
ic

at
io

ns

X
X

fie
ld

da
ta

[9
9]

X
X

C
on

st
ru

ct
in

g
pe

rf
or

m
an

ce
m

od
el

s
ca

pt
ur

in
g

th
e

re
la

ti
on

sh
ip

be
tw

ee
n

ap
pl

ic
at

io
n

pe
rf

or
m

an
ce

an
d

sy
st

em
re

so
ur

ce
s

to
lo

ca
te

po
ss

ib
le

pe
rf

or
-

m
an

ce
bo

tt
le

ne
ck

lo
ca

ti
on

s

X

[7
8]

X
X

Pr
op

os
in

g
an

m
ac

hi
ne

le
ar

ni
ng

ba
se

d
ap

pr
oa

ch
th

at
ut

ili
ze

un
su

pe
r-

vi
se

d
le

ar
ni

ng
al

go
ri

th
m

s,
i.e

.,
af

fin
it

y
pr

op
ag

at
io

n
cl

us
te

ri
ng

,
on

th
e

m
on

it
or

ed
pe

rf
or

m
an

ce
co

un
te

rs
an

d
sy

st
em

ex
ec

ut
io

n
lo

gs
to

lo
ca

te
an

om
al

ie
s

on
cl

ou
d-

ho
st

ed
w

eb
ap

pl
ic

at
io

ns

X

[6
1]

X
X

In
je

ct
in

g
m

et
ad

at
a

to
ev

en
ts

at
ea

ch
le

ve
l

of
Pa

aS
st

ac
k

an
d

ad
op

ti
ng

st
at

is
ti

ca
l

ap
pr

oa
ch

es
(e

.g
.,

ch
an

ge
po

in
t

an
al

ys
is

,
re

la
ti

ve
im

po
rt

an
ce

)
to

id
en

ti
fy

th
e

w
or

kl
oa

d
ch

an
ge

or
th

e
cl

ou
d

se
rv

ic
e

th
at

is
re

sp
on

si
bl

e
fo

r
th

e
pe

rf
or

m
an

ce
re

gr
es

si
on

s

X

[6
9]

X
A

na
ly

zi
ng

th
e

Sp
ar

k
ex

ec
ut

io
n

lo
g

by
ex

tr
ac

ti
ng

th
e

fe
at

ur
es

re
la

te
d

to
sy

st
em

ru
nt

im
e

pe
rf

or
m

an
ce

(e
.g

.,
ex

ec
ut

io
n

ti
m

e,
ga

rb
ag

e
co

lle
ct

io
n)

an
d

ut
ili

zi
ng

th
e

w
ei

gh
te

d
fa

ct
or

s
to

de
ci

de
th

e
pr

ob
ab

ili
ty

of
th

e
ro

ot
ca

us
es

X

[5
7]

X
X

Pr
op

os
in

g
a

ca
sc

ad
in

g
cl

us
te

ri
ng

ap
pr

oa
ch

to
cl

us
te

r
lo

g
se

qu
en

ce
s

an
d

co
rr

el
at

in
g

cl
us

te
rs

w
it

h
pe

rf
or

m
an

ce
m

et
ri

cs
to

id
en

ti
fy

pe
rf

or
m

an
ce

pr
ob

le
m

s

X

[7
3]

X
C

om
bi

ni
ng

m
ac

hi
ne

le
ar

ni
ng

w
it

h
gr

ap
h

ce
nt

ra
lit

y
al

go
ri

th
m

s
to

lo
ca

te
th

e
no

de
s

sp
re

ad
in

g
th

e
pe

rf
or

m
an

ce
an

om
al

ie
s

X

O
ur

ap
pr

oa
ch

X
X

X
Pr

op
os

e
an

ap
pr

oa
ch

co
m

bi
ni

ng
bo

th
hi

st
or

ic
al

re
po

si
to

ry
da

ta
an

d
ru

nt
im

e
in

fo
rm

at
io

n
w

hi
le

ju
st

re
qu

ir
es

m
in

im
um

kn
ow

le
dg

e
ab

ou
t

th
e

in
te

rn
al

be
ha

vi
or

s
of

th
e

sy
st

em
to

ef
fe

ct
iv

el
y

as
si

st
de

ve
lo

pe
rs

in
id

en
ti

fy
in

g
th

e
ro

ot
ca

us
es

of
pe

rf
or

m
an

ce
re

gr
es

si
on

s

N
ot

e:
Th

e
va

lu
e

“n
/a

”
of

th
e

“C
oa

rs
e-

gr
ai

ne
d

ro
ot

ca
us

e”
un

de
r

th
e

“L
im

it
at

io
ns

”
co

lu
m

n
in

di
ca

te
s

th
at

if
th

e
pr

io
r

w
or

k
ca

nn
ot

lo
ca

te
ro

ot
ca

us
e,

th
en

it
is

no
ta

pp
lic

ab
le

to
“C

oa
rs

e-
gr

ai
ne

d
ro

ot
ca

us
e”

lim
it

at
io

n.

5

Classifier [64]) to match the behavior of a new version
to the behavior of prior tests to locate the performance
regression root causes. However, these approaches suffer
some common limitations: 1) in order to compare the load
testing results from different versions, a similar or even
the same testing workload is needed. However, it may be
difficult to design load test cases that represent the field
workloads. In particular, there may exist special real-world
cases where the field workload is completely different from
other workloads (e.g., when a popular site (e.g., Reddit and
Twitter) links to a small site, the throughput of that small site
would be much greater than the average daily workload3,
a phenomenon also known as the Slashdot effect [20]).
The impact of different workloads between the old and
new versions of the system are not considered in these
approaches; 2) in practice, load testing is time and resource-
consuming, which requires expensive computing resources
in the testing environment and excessive time to execute the
tests (e.g., from hours to even days).

In order to avoid the need for expensive load testing
on the entire software system, prior work adopts unit tests
and combines the testing results with static or dynamic
source code analysis techniques to pinpoint performance
regression root causes [37, 45, 58, 70, 83]. For example,
Heger et al. [58] analyze the unit testing results during
the development phase and utilize dynamic code analysis
techniques to extract the call tree information from the
source code revision history to identify the commits that
introduce the performance regressions. However, due to
the nature that these approaches are based on small-scale
testing, such testing can not capture the performance of the
system and be only aware of the performance of separate
components. Similar to load testing-based approaches, they
do not take the impact of the continuously varying work-
loads into consideration either.

Prior research also proposes to use system runtime in-
formation (e.g., execution logs and performance metrics)
collected directly from the field to locate performance re-
gression root causes [24, 38, 57, 61, 65, 69, 73, 78, 99]. For
example, Nair et al. [78] propose a machine learning-based
approach that utilizes unsupervised learning algorithms,
i.e., affinity propagation clustering, constructed on the mon-
itored runtime performance metrics and system execution
logs to locate anomalies in cloud-hosted web applications.
Lu et al. [69] provide an approach that analyzes the Spark
execution logs to extract the features related to system
runtime performance (e.g., execution time, memory usage,
and garbage collection) and utilize a weighted combination
of certain specific cause related factors to determine the
probability of the root causes. Such field data-based ap-
proaches benefit from saving the effort and resources for
load testing, and it also considers the system level perfor-
mance under the impact of varying workloads. However,
some approaches may suffer from the limitations that the
located root causes are too coarse-grained (e.g., only at
service level) [24, 57, 61, 69, 78, 99], which can only assist
IT operators (instead of developers) to locate the high-level
service or modules with performance problems but may not

3. https://web.archive.org/web/20141101224936/http://blogs.abc.
net.au/newseditors/2012/08/the-reddit-effect.html

be sufficient to support developers to locate the specific root
causes (e.g., at class or method level), or only target specific
performance regression patterns [24].

Different from prior approaches, in this paper, we pro-
pose an approach that combines both historical repository
data (e.g., code change history) and field runtime infor-
mation (e.g., web-access logs and performance metrics)
while just requiring minimum knowledge about the internal
behaviors of the system to effectively assist developers
in identifying and fixing the root causes of performance
regressions. Our approach makes the use of statistical and
machine learning models to effectively capture the relation-
ship between the workloads of the system and the system
performance, thereby having the capability to handle the
continuously varying workloads in the field scenario.

3.2 Software fault localization

A great amount of prior research has been proposed to
locate faults in software systems. The traditional practice
of fault localization often adopts the most intuitive system
analysis techniques, e.g., logging [46], profiling [28, 56, 85],
and debugging (e.g., assertions and breakpoints) [42, 59, 84]
to identify the exact locations of program faults. However,
such traditional techniques require developers to have suffi-
cient experience and expert knowledge about the system
to locate the faults and they are often time and effort-
consuming.

To improve the effectiveness and efficiency, various ad-
vanced fault localization techniques have been proposed.
Prior research [21, 22, 25] employ program slicing (both
static and dynamic) techniques to extract the relevant parts
of the source code that influence or are influenced by the
variables at a given point, in particular, an incorrect variable
value that causes the test case to fail, allowing developers
to focus on a reduced search space rather than the entire
program to locate faults. Program spectrum, which records
the execution information (e.g., code coverage) of program
entities (e.g., statements or methods), is also employed in
prior studies [19, 43, 55, 102, 103] for fault localization.
Such spectrum-based approaches rank program entities ac-
cording to a suspiciousness score which indicates their risk
of being faulty. This score is calculated by various rank-
ing formulae based on the program spectrum information
collected from passing and failing test cases. In addition,
prior works [18, 27, 74, 75, 92, 98] also propose to leverage
model-based diagnosis techniques to locate program faults.
Particularly, they utilize statistical analysis or source code
analysis to build various types of models (e.g., dependency
models [27, 98]) to represent the program structures and
behaviors. If the test case fails, i.e., conflicting the expected
output, the model will help to determine the statements
whose incorrectness can explain incorrect outcomes. Prior
research [35, 36, 79, 95, 96, 104] also advocates the use of
data mining and machine learning techniques by learning
a model or deriving patterns from a huge volume of soft-
ware data to locate program faults. For example, Wong et
al. [95, 96] propose approaches based on neural networks
to capture the relationship between the coverage data of
each test case and the corresponding execution result, then
generate the suspiciousness of each statement containing the

https://web.archive.org/web/20141101224936/http://blogs.abc.net.au/newseditors/2012/08/the-reddit-effect.html
https://web.archive.org/web/20141101224936/http://blogs.abc.net.au/newseditors/2012/08/the-reddit-effect.html

6

Understanding the relationship between the
performance of a system and its runtime activities

An	industrial
system
(i.e.,	ES)

Coping with the collinearity and
redundancy among system runtime activities

Performance
metrics	and	log
appearances

 Identifying problematic runtime
activities related to performance regressions

Black-box
performance
models

 Linking problematic
runtime activities to code changes

Web	requests	associated
with	performance

regressions

Increasing the ease of adoption

Code	changes	associated
with	performance

regressions

Visualization	of
performance	regressions
(i.e.,	Elastic	Stack)

Fig. 1. An overall process of developing our approach in an industrial setting

bug.
Compared to our work, the preceding approaches lack

the consideration of non-functional faults, e.g., performance
regressions, which are crucial in industrial applications,
especially for large-scale systems with a large user base. Our
approach (especially step 5) employs static code analysis, a
commonly used technique for fault localization [27, 63, 92,
98] to locate the code changes related to a web request that
causes the performance regression. However, in the adop-
tion of our approach, practitioners can also opt to use other
preferred techniques to associate the web request provided
by our approach to the code changes that potentially result
in performance regressions.

4 CHALLENGES

In this section, we provide detailed discussions on our faced
challenges when we aim to automatically locate the root
causes of performance regressions based on the field data,
in the context of an industrial software system, i.e., ES. We
also describe our corresponding solution to each challenge.

Figure 1 outlines the challenges and their associated
steps in the overall process of developing our approach for
locating the root causes of performance regressions on ES.
We divide the overall process into five parts, and each deals
with an important challenge that is described below. The
details of our approach are described in Section 5 and the
lessons that we learned from addressing these challenges
are summarized in Section 8.

Challenge 1: Understanding the relationship between
the performance of a system and its runtime activities
Challenge. In order to locate the root causes of performance
regressions, we first need to understand the relationship
between the performance of a system and its runtime activi-
ties (i.e., how system activities impact system performance).
However, prior research [31] finds that few practitioners
construct performance models (e.g., queuing networks [68])
for performance management during their development
process. Thus, after the system is deployed in the field, the
performance of most software systems, like ES, is usually
viewed as a black box, leading to difficulties in describing
such a relationship [44, 50]. Moreover, the workloads of a
large-scale system are impacted by thousands or millions of
users interacting with the system [39]. Such workloads are
typically dynamic and vary in many aspects, such as the
load intensity, and the order and the ratio among different
user operations. Such dynamic workloads further increase
the difficulty of capturing the relationship between the
performance of a system and its runtime activities.
Solution. We build performance models to understand the
relationship between the runtime activities of a system and

its performance under such activities. There are two types
of performance models: white-box models and the black-
box models [44]. White-box performance models typically
require knowledge about the system’s internal behavior and
such knowledge is often not available when the system is
deployed in the production environment [44, 50]. Therefore,
we leverage black-box performance models that do not
require knowledge about the internal behavior of a system.

Black-box models typically use machine learning tech-
niques to model a system’s performance against its runtime
activities that are recorded in the execution logs. In our
case, we build black-box performance models that use the
appearances of each type of web-access logs as the indepen-
dent variables and performance metrics as the dependent
variable. We find that using a simple black-box model (i.e., a
random forest regression model) can already achieve a high
modeling accuracy, which demonstrates the effectiveness of
using black-box models to capture the relationship between
the system runtime activities and its performance.

Challenge 2: Coping with the collinearity and redun-
dancy among system runtime activities
Challenge. We observe that some system runtime activities
may get entangled and always appear simultaneously in
the specific order. One of the typical examples is that once
users login to a mail system, they often check their inbox.
According to prior studies [14, 101], when building regres-
sion models, the degree of correlation between independent
variables should be low. Otherwise, the collinearity and
redundancy among the independent variables may have a
negative impact on fitting and interpreting the models.
Solution. To solve the above-mentioned challenge, we use
correlation analysis and redundancy analysis to remove the
collinearity and multicollinearity among the independent
variables, respectively. As the system runtime activities
associated with the removed independent variables can
potentially cause the performance regression, we maintain
a mapping between the removed independent variables
and the remaining independent variables that are highly
corrected with the removed ones. When we detect a system
runtime activity (for which the corresponding independent
variable remains in the model) that may cause the perfor-
mance regression (cf. Section 5), we also consider the system
activities that have a high correlation with the detected
activity as potential causes of the performance regression.

Challenge 3: Identifying problematic runtime activities
related to performance regressions
Challenge. As ES adopts an agile development approach
and the release cycle is within two weeks, our industrial
partner does not have enough budget and time to conduct

7

performance tests and examine the root causes of perfor-
mance regressions. Therefore, we aim to help developers
automatically locate the root causes introducing the per-
formance regressions without running performance tests.
As the first step, we need to automatically identify the
system activities related to the performance regressions. It is
worth noting that although Challenge 1 and Challenge 3 are
related, they are indeed different challenges. In particular,
Challenge 1 describes whether one can model the system
performance using system activities, especially when the
system is deployed in the field and little knowledge about
the system’s internal behavior can be acquired. However,
Challenge 3 is no longer to capture the relationship between
the performance of a system and its runtime activities,
instead, it is about whether one can locate the problematic
system activities in a statistical way. In fact, from prior
related work (cf. Section 3), much prior research aims at
the detection of performance regression (mostly touching
on Challenge 1) but not locating the particular factors that
cause the regression (Challenge 3).
Solution. We propose a novel statistical solution that au-
tomatically identifies system activities related to the perfor-
mance deviance. Intuitively, if there is a performance regres-
sion, a performance model built on an old system version
cannot equally explain the performance of a new version.
In such a performance model, the independent variables
that contribute to the difference in model performance are
related to the root causes of the performance regression.
First, we build the black-box performance models (e.g., a
random forest model) on the old version and on the new
version, respectively. We then apply the two performance
models on the new version data and measure the deviance
between the two models’ modeling errors. A larger deviance
is more likely to suggest a performance regression.

In order to find out which system runtime activities
are related to the performance regression (i.e., the deviance
between the two performance models’ modeling errors), we
build a linear regression model taking the system activities
(i.e., log appearances) as the independent variables and the
deviance of modeling errors as the dependent variable. If an
independent variable is statistically significant in the linear
regression model, the independent variable is statistically
significantly contributing to the difference of the modeling
errors. Therefore, the associated system activities with the
independent variable may be related to the performance
regression, which are considered as candidates for perfor-
mance regression causes.

There may be multiple candidates that are related to the
performance regression. To prioritize ES’s resources on the
system activities that are most likely to cause the perfor-
mance regression, we rank the candidate system activities
before providing them to developers. In particular, we use
the effect of each independent variable on the model’s
output to rank the system activities that are associated with
each independent variable.

Challenge 4: Linking problematic runtime activities to
code changes

Challenge. Given the problematic system runtime activities
that are related to a performance regression, developers still

need to inspect the source code related to the problematic
system activities and locate the code changes that cause
the performance regression. Besides, during the regular
meeting with our industrial partner, they mentioned that
not all developers have a deep understanding of the system
behaviors, and it is challenging for them to locate files,
classes, or functions that are related to the system activities.
Thus, motivated by the feedback from developers, we aim
to further assist developers in finding the code changes that
are associated with the problematic web activities related to
the performance regressions.
Solution. In order to locate the code changes that lead to
a performance regression, we focus on the web requests
associated with the system activities that introduce the per-
formance regressions. We aim to identify the code changes
associated with the web requests in the commit history
between the two versions where a regression is detected.
We first search the entire source code to locate the methods
that are associated with a web request, then use source code
analysis to build a call graph of the web request. Finally,
we identify the code changes in the commit history that
affect the call graph, which are considered the potential root
causes of the performance regression.

Challenge 5: Increasing the ease of adoption
Challenge. Although our approach can automatically locate
the root cause of a performance regression, developers
may be reluctant to adopt our approach in the production
environment. Derived from the experience and feedback
from the use of our industrial collaborators, we realize that,
first, some developers are concerned that the additional per-
formance monitoring may introduce system performance
overhead, especially when the system is serving a large
number of end users in the field operations. Second, as
many developers may lack knowledge about our used sta-
tistical techniques, they may not completely understand and
trust our approach for their system.
Solution. To address the challenge of adoption, we first
study the system performance overhead after we integrate
our performance monitoring into the existing system. The
performance overhead depends on how often system per-
formance data is sampled. While a higher sampling fre-
quency can achieve a more accurate measurement, it can
lead to larger performance overhead. Therefore, we wish
to find the optimal sampling frequency of system perfor-
mance data. To achieve this, we load test the system with
different scales of workloads while recording the impact
of different sampling frequencies (e.g., every 10s, 30s, and
60s) on the system performance. At the same time, we
worked closely with the senior operation support specialists
to find the acceptable performance overhead while ensur-
ing a considerable high sampling frequency. Finally, we
reached a consensus that sampling the performance data
at a frequency of every 30 seconds is an acceptable balance
between the accuracy and the overhead of the performance
measurement.

On the other hand, to help developers understand our
approach’s mechanism and the output, we visualize the
system performance and the root causes of performance
regressions in a user-friendly manner. In particular, we inte-
grated our approach into an Elastic Stack [11] platform such

8

Process

Data

Software system

Old version logs and
performance metrics

New version logs and
performance metrics

System

Model

Dividing logs
and performance metrics

into time periods

Calculating
log appearances and
performance metrics

Step 1: Preparing data Old version
log appearances and
performance metrics

New version
log appearances and
performance metrics

Correlation and
redundancy analysis

Building random forest
performance models

Step 2: Building
performance models

Step 3: Measuring the deviance of modeling errors

Old version
performance

models

New version
performance

models

Statistical
analysis

New version
log appearances

Apply models
on the data

Apply models
on the data

Modeling errors from
the old version model

Modeling errors from
the new version model

Deviance of
modeling errors

New version
log appearances

Step 4: Modeling the relationship between appearances
of web requests and the deviance of modeling errors

Linear
regression

model

Statistically
significant web

request

Step 5: Locating the
 potential performance
 regression root causes

Build model
Identify

 Located potential
performance regression

root causes

Fig. 2. An overview of our approach of locating performance regression root causes

that developers can simply log into the platform to view the
status of the system performance (e.g., CPU, memory, and
disk I/O) and the workloads (e.g., total number of requests,
slowest requests, and response status over time), as well
as our newly added performance regression dashboard,
which enables developers to observe the instantly mea-
sured system performance and the modeling errors of our
model. With the help of visualization, developers can have
a better understanding and control of the overall system
performance and the working of our approach, which can
assist them in analyzing the root causes of performance
regressions confidently and efficiently.

5 APPROACH

In this section, we briefly discuss the detailed process and
the implementation of our approach for locating perfor-
mance regression root causes. Figure 2 illustrates the overall
process of our approach. Our intuition is that, if a system
runtime activity (e.g., a web request) is associated with the
deviation of the performance models built on two different
software releases, then the system runtime activity is related
to the performance regression between the two releases. It
is also worth noting that, in order to deploy our approach
for locating performance regression root causes, the target
software system is supposed to be a web-based system de-
ployed in the typical web server (e.g., Apache and IIS) and
can generate logs that record the system runtime activities.

Step 1: Preparing data. In order to establish the rela-
tionship between the runtime activities of the system (i.e.,
the web requests) and the corresponding performance, we
first need to align the web-access logs generated by the
web servers (e.g., IIS) and the collected performance metrics
(e.g., CPU usage). Specifically, we divide the data into small
time periods (e.g., every 30 seconds) and allocate each line
of web-access logs and each record of performance met-
rics based on their timestamps. Afterwards, we count the
appearance of each type of web request in the web-access
logs and we calculate the average value of the performance
metrics during the time period.

Step 2: Building performance models. We build com-
mon black-box performance models [44], similar to prior
research [26, 50, 99, 101], to capture the performance of
a system and its runtime activities. We build one perfor-
mance model for each version of the system. In particular,

the independent variables of the model are the number
of appearances of each type of web request in each time
period, while the dependent variable is the corresponding
performance metric, i.e., CPU usage, of each time period.

Similar to prior research using black-box performance
models [26, 101], we also notice that different log events
may always appear simultaneously in a specific order, e.g.,
user logging in and then checking user’s inbox, and pro-
vide repetitive information for the workloads. Since such
collinearity and redundancy among the independent vari-
ables may negatively impact the robustness of the perfor-
mance models (i.e., the models built on old version data may
not perform well on new data from the new version of the
system), we remove the entangled independent variables
that provide repetitive information about the workloads
to avoid any bias. In particular, we conducted pair-wise
correlation analysis to remove one variable from each pair of
highly correlated independent variables whose Pearson cor-
relation coefficient [30] is higher than 0.7. We also conducted
a redundancy analysis [54] to remove any independent
variables that can be modeled by the rest of the independent
variables with a high model fit (R2 > 0.9). Afterwards,
we opt to use the random forest regression model to build
our performance models, due to its high accuracy shown in
prior research [26, 50, 101].

Step 3: Measuring the deviance of modeling errors. Our
intuition is that the root cause of a performance regression
is related to the deviation of the performance model built
on the new version from the performance model built on
the old version. In particular, if the performance model
built on the new version results in a worse modeling error
than the performance model built on the old version, it is
an indicator of a performance regression and can be used
to locate the root causes of the performance regression.
Intuitively, one may build the model on the old version
of the system and then measure the modeling errors on
the new version to determine the performance deviance be-
tween the old version and the new version. However, such
a naive approach may be biased. For example, a well-built
performance model may only have less than 7% average
prediction error; while another less fit performance model
may have 10% average prediction error. In these cases, it
is challenging to determine whether an average prediction
error of 8% on the new version of the system should be
considered as a performance regression. Therefore, we first

9

build two performance models on the old version and the
new version of the system separately, and use the prediction
error from the old version as a baseline to measure the
deviance between the modeling errors of the new and old
performance models. Specifically, we train two performance
models using the old version data and the new version
data, respectively, and apply the two models on the new
version data to measure their respective modeling errors.
However, we cannot directly calculate the modeling error
of the new version’s model with the new version’s data,
since applying a model to its training data can lead to over-
optimistic results. To address this issue, we apply the leave-
one-out approach [34, 67]. For each time period in the new
version, we remove its data from the training data to re-
build the model and apply the re-built model on the time
period. We repeat the process until all time periods are used
as test data once.

Finally, having both the modeling errors from the old
version and the new version for each time period, we cal-
culate the deviance of modeling errors for each time period.
To statistically measure the deviance of modeling errors, we
analyze the random forest model and obtain the modeling
errors from each decision tree inside the random forest. For a
random forest with 100 decision trees, for each time period,
we would have 100 modeling errors from the new version
and the old version, respectively. Then, we calculate the
Cohen’s D effect size [41] between the modeling errors from
the new and old versions (i.e., the deviance of modeling
errors).

Step 4: Modeling the relationship between appear-
ances of web requests and the deviance of modeling
errors. Intuitively, if two versions of a software system
have no performance deviance (no regression or improve-
ment), the deviance of the modeling errors (from the last
step) should be randomly distributed around zero. Oth-
erwise, if there is a performance regression, there should
be systematic deviance of modeling errors, and the web
requests that contribute to the deviance are related to the
root cause of the performance regression. Therefore, in this
step, we use a linear regression model [49] to explain the
relationship between the web requests and the modeling
errors. The independent variables of the model are the
number of appearances of each type of web request in
each time period; the dependent variable is the correspond-
ing deviance in modeling errors in that time period. We
choose linear regression due to the fact that, unlike deep
learning models that are usually considered as black boxes,
linear regression is explainable as it has a good ability to
explain the effect of each independent variable and we just
need to explain such model in the next step (i.e., Step 5).
Nevertheless, practitioners may also use other explainable
modeling techniques in this step. After building the linear
regression model, we only keep the statistically significant
independent variables (p-value 60.05), which are potential
root causes of the performance regression.

On the other hand, the linear regression model may
have no statistically significant independent variables or a
poor model fit (very low R2 cf. Section 6 and Section 7).
Therefore, under this circumstance, the results mean that we
cannot identify a relationship between the web requests and
the deviance of the modeling errors, i.e., the new version

of the system may not have any performance regression or
improvement.

Step 5: Locating the potential performance regression
root causes. In this step, we first rank the web requests
that are potential performance regression root causes, such
that practitioners can prioritize their effort on the most
likely root causes. Specifically, we calculate the effect of
each statistically significant independent variable on the
output of the linear regression model, i.e., the deviance of
modeling errors. We keep all of the variables at their median
value, except that we increase the median value of one
variable by 10% and then re-predict the output. Then, we
calculate the percentage of difference in the output caused
by increasing the value of the variable (i.e., the effect of
the variable). Such an approach has been widely used in
prior software engineering research to understand the effect
of independent variables [76, 87, 88]. These prior studies
chose to increase the median value of one variable by either
10% or 100%, however, the exact increase of percentage does
not impact the ranking of the results. We would like to
note that, such an effect may be either positive or negative.
Similarly, the appearance of a certain web request may
also contribute to either better or worse performance of the
systems. Therefore, we only rank the potential performance
regression root causes if a higher appearance of the web
request is associated with both worse performance (from the
model built in step 2) and higher deviance in the modeling
error (from the model built in step 4).

The ranked list of web requests that are associated with
the performance regression can help developers find the
root cause. However, in our approach, we step further
and link the web requests to the specific code changes
that lead to the performance regression to provide more
detailed insights. First, we automatically search the entire
source code of the software to locate the methods that are
associated with each of the web requests that are related
to the performance regression. Then, we use source code
analysis frameworks, such as .NET Compiler Platform SDK
called “Roslyn” [15] and Eclipse Java development tools
called JDT [10], to parse the source code and build a call
graph of the web request. We seek for the code that is called
by the request and identify all the places in the source code
where the web request can be triggered, e.g., dynamically
called by another web request. Finally, we identify the code
changes that change any methods along with the call graph
related to the web requests. In addition, we also provide the
metadata of the commits that contain these code changes,
including:

• Commit hashes
• Timestamp
• Comment
• Committer
• Code churn
• Code difference

Such changed methods along with the commits (and the
corresponding metadata) are considered as the potential
causes of the performance regression and they are provided
to developers. We would like to note that since we build
the call graph of the web requests that are related to the
performance regression from the new version of the system

10

TABLE 2
An overview of the open-source subject systems

Subject Version Domain SLOC (K)

TeaStore 1.3.4 Microservice e-commerce 29.7
OpenMRS 2.1.4 Medical record system 67.3
CloudStore v2 E-commerce 7.7

Note: SLOC of the subject systems is measured with cloc [7].

and match all the new version code changes that change
any methods along with such call graph, so even if the call
graph of the new version of the system is different from the
old version, our approach still can locate the root cause of
the performance regressions.

6 EVALUATION

We evaluate our approach on three open-source systems and
one industrial system. In this section, we present our eval-
uation that is conducted on three open-source systems4. We
present our evaluation on the industry system in Section 7.

6.1 Open-source systems and their workloads
We use three open-source subject systems including TeaStore,
OpenMRS, and CloudStore to evaluate our approach. Our
three open-source subject systems are all web-based systems
from different domains, which ensures that our findings are
effective to a variety of web-based systems while not limited
to a specific domain, and they are also studied as perfor-
mance benchmarking systems in prior research [47, 101]. An
overview of the subject systems is shown in Table 2.

TeaStore is an open-source reference application that is
designed to be used for benchmarking performance testing
and modeling. Its main function is emulating a basic web
store for tea and tea supplies [93]. TeaStore is developed in
a distributed micro-service architecture and it consists of
five distinct services (i.e., WebUI, Image Provider, Authen-
tication, Recommender, and Persistence). In addition to five
primary functional services, there is also a registry service
responsible for the necessary service discovery and load
balancing. We choose TeaStore since the result of previous
work [47] shows that due to the sufficient complexity and
performance properties of the system itself, TeaStore can
serve as an appropriate candidate case study for perfor-
mance modeling. We deployed the version 1.3.4 of TeaStore
in our case study. TeaStore has a few quintessential use cases,
including logging in system, browsing the store, browsing
user’s profile, browsing products, shopping products, and
logging out the system.

OpenMRS is an open-source health care system that
supports customizable electronic medical records and it is
commonly used in developing countries. OpenMRS is built
by a global open community that aims to improve health
care delivery in resource-constrained environments by creat-
ing a robust, scalable, user-driven, and open-source medical
record system platform [16]. We deployed the OpenMRS ver-
sion 2.1.4 and the REST web services module version 2.24.
The database data we used are from the MySQL backup files

4. Our experiment setup, workloads, and results are shared online
https://doi.org/10.5281/zenodo.5659008 as a replication package.

provided by OpenMRS developers. The demo database file
contains data for over 5K patients and 476K observations.
The typical usage scenario of OpenMRS consists of four op-
erations: adding, deleting, searching, and editing resources.
In total, we created eight different simulated system activ-
ities in our case study, comprising 1) creation of patients,
2) deletion of patients, 3) searching for patients by ID, 4)
searching for patients by name, 5) searching for concepts, 6)
searching for encounters, 7) searching for observations, and
8) searching for types of encounters.

CloudStore is an open-source e-commerce web applica-
tion designed to be used in the scenarios of analyzing the
cloud characteristics of systems, such as capacity, scalability,
elasticity, and efficiency [9]. It was developed as a showcase
application to validate the European Union funded project
which is called CloudScale [8]. It follows the functional
requirements defined by the TPC-W standard which is a
web e-Commerce benchmark for transaction processing [4].
We deployed the CloudStore version v2 and the database
data we used was generated using the scripts provided by
CloudStore developers. The data in the database contains
about 864K customers, 777K orders, and 300 items. We con-
structed the simulated system activities to cover searching,
browsing, adding items to shopping carts, checking out, and
paying for commodities.

Simulating dynamic field workloads. The goal of our
approach is to locate the root causes of performance regres-
sions in the field, i.e., without pre-assumption of consistent
workloads between versions. To simulate such dynamic
field workloads, we follow three steps to design our work-
loads: 1) Each subject system is driven by a mixture of
multiple (four or five) JMeter-based load drivers, where
each load driver has different profiles of mixed workloads.
In particular, the original versions (i.e., the versions without
injected regressions) are driven by four load drivers and the
new versions (i.e., the versions with injected regressions)
have five load drivers, in order to ensure that there are
some workload profiles unseen from the original version;
2) To simulate inconsistent workloads, for each load driver,
the runtime activities of each system are driven with a
random order, with a random length of gaps between two
activities. In addition, we set different numbers of maximum
concurrent users for different workloads at different times.
Hence, each load driver itself produces inconsistent work-
loads in different time periods; 3) Furthermore, for each of
the load drivers, we pick several different test actions and
put them in an extra JMeter loop controller that iterates a
random number of times to increase their appearances in
the workload, to make sure that each of the five load drivers
has different characteristics in workload actions. Each run of
the system lasts a total of eight hours, where only the seven
hours in the middle are used in our analysis (i.e., to exclude
the warm-up and cool-down periods).

6.2 Injected performance regressions

For the open-source subject systems (i.e., TeaStore, OpenMRS,
and CloudStore), we cannot find any historical performance
regressions of specific versions via checking the system ver-
sion history. Therefore, we had to manually inject four types
of performance regressions in multiple arbitrarily selected

https://doi.org/10.5281/zenodo.5659008

11

positions of each subject system. Inspired by the previous
work [50, 53, 86], we considered four types of performance
regressions that are commonly encountered in practice and
cover various software system performance aspects. The
injected performance regressions are explained below:
A: Injected additional calculation. We added additional
calculation to the source code that is frequently executed
under our simulated workloads.
B: Generated excessive garbage collection. Creating large
numbers of temporary objects will lead to excessive garbage
collection and consequently high CPU utilization. Therefore,
due to the fact that Strings are immutable objects in Java, we
injected string concatenation operations (i.e., “+=”) into the
source code.
C: Added excessive I/O access. Since accessing I/O storage
devices (e.g., hard drives) are usually slower than accessing
memory, we added redundant logging statements to the
source code that is frequently executed. The execution of
the logging statements may cause excessive I/O operations
and introduce performance regressions.
D: Created superfluous use of multi-threading. When a
CPU switches from executing one thread to executing an-
other, the CPU needs to save the local data, program pointer,
etc. of the current thread, and load the local data, program
pointer, etc. of the next thread to execute. We introduced
large numbers of threads which may cause the CPU to be
busy switching from the context of one thread to the context
of another.

In order to reduce the bias that may be introduced by
injecting the synthetic performance regressions in a partic-
ular location in the source code, we manually examine the
source code and arbitrarily identify the candidate locations
in the source code without the preference for any specific
locations, to inject each type of the synthetic performance re-
gressions. Since the arbitrarily determined injected locations
in the source code are selected through an unsystematic
manual process, they may still be influenced by subjective
factors. In order to mitigate this effect, in our experiments,
we opt to separately inject each synthetic performance re-
gression in four different arbitrarily selected places (i.e., p1
to p4) in the source code, which makes up a total of 16
different versions with performance regressions per open-
source system.

6.3 Experiment setup
The experiments on the open-source subject systems are
conducted in the Google Cloud Platform [12], where three
separate virtual machines are set up for each subject system.
These virtual machines have the same hardware configu-
ration, which includes an Intel Haswell 4 cores CPU, an
8GB memory, and a 300GB SATA hard drive. These virtual
machines are connected to the same internal network. All
virtual machines run the Linux Ubuntu 16.04 LTS (Xenial
Xerus) operating system. We deploy the subject web ap-
plication in Apache Tomcat [6] on the first machine (i.e.,
the web server). The second machine is deployed as a
database server. Finally, we run the JMeter [5] load driver
with varying workloads on the third machine to simulate
real-world users using the system under test (SUT).

For the open-source subject systems, we use pidstat [17]
to monitor the resource utilization (e.g., CPU usage) of the

systems. To minimize the noise of other background pro-
cesses, we only monitor the system resource usage for the
process of the subject system. A higher sampling frequency
of collecting performance metrics can capture the system
performance more accurately. However, a higher sampling
frequency would also introduce more performance over-
head. For the purpose of achieving an optimal balance
between the monitoring accuracy and the performance over-
head, we monitor the CPU usage of the open-source systems
every 10 seconds.

In this study, we use CPU as the performance metric
for locating performance regressions root causes, since our
closed-source industrial system and three open-source sub-
ject systems are all CPU-intensive. Besides, CPU is usu-
ally the main contributor to server costs [51]. Performance
regression in terms of CPU would result in the need for
more CPU resources to provide the same quality of service,
thereby significantly increasing the cost of system opera-
tions. However, our approach is not limited to the per-
formance metric of CPU usage. Practitioners can leverage
our approach to consider other performance metrics (e.g.,
memory and disk I/O) that are appropriate in their context.

6.4 Evaluation results of open-source systems
For each of the studied open-source systems, we first run the
system without performance regressions (i.e., v0) under the
combination of four different concurrent workloads. Then,
we run the system with an injected performance regression
under the combination of five different concurrent work-
loads. Our approach should be able to detect and locate the
root cause of the performance regression. For comparison,
we also run the system without performance regressions
(i.e., v0) under the combination of five different concurrent
workloads. Ideally, our approach should not detect and
locate root causes of performance regressions from this
version. Table 3 and Table 4 show the detailed results of
applying our approach to locate the root causes of perfor-
mance regressions for the studied open-source systems (i.e.
TeaStore, OpenMRS, and CloudStore). We use three evaluation
metrics to evaluate our approach.
1) R2 is the model fit of the linear regression models that
are built to model the relationship between the appearances
of web requests and the errors of performance modeling. A
higher R2 indicates that certain web requests are associated
with the performance modeling errors, i.e., being related to
performance regressions. Therefore, the R2 values from the
models trained from the versions with injected performance
regressions are expected to be higher than the ones without
injected regressions (i.e., the “No regressions” column).
2) Effect with regressions. Effect quantifies the relationship
between the appearances of one type of web request and
the deviance of performance modeling error (cf. Step 5 in
Section 5). The higher the effect, the more likely that the
web request is the root cause of the performance regression.
Effect with regressions is the effect of the web request where
the performance regression is injected.
3) Highest effect without regressions refers to the highest
effect of the web requests without injected regressions.
Therefore, the values of the highest effect without regres-
sions are expected to be lower than the effect with regres-
sions. The bigger the difference between the two values, the

12

better our approach can differentiate web requests with and
without performance regressions.

In addition, we also measure the precision of using
the existing baseline approach (cf. Section 2) to locate the
injected performance regressions and present it in Table 5.
We do not measure recall since false-positive results are
the main limitation of the baseline approach. All the web
requests with the injected performance regressions can be
covered by the baseline approach (i.e., recall of 100%).

Our approach can effectively distinguish between sys-
tem versions with and without performance regressions.
Table 4 shows that, for all the subject systems, we obtain
much higher R2 values for the versions with injected perfor-
mance regressions than for the versions without injected re-
gressions. For example, for OpenMRS, the R2 of the version
without injected regressions is only 0.14, i.e., a poor model
fit; while for all other versions with injected regression, the
lowest R2 is 0.50. Such a large difference in R2 values shows
the effectiveness of using the R2 to detect performance
regressions. The results also demonstrate the high quality
of our models for capturing the relationship between the
appearances of web requests and the errors of performance
modeling when there are performance regressions; while
when there is no performance regression, the low R2 values
indicate that the errors of performance modeling are not
likely to be associated with the appearances of any particu-
lar web request.

Our approach can successfully locate the root causes
of the injected performance regressions, always ranking
the web requests with injected regressions in the first
place. We find that for all the subject systems (i.e., TeaStore,
OpenMRS, and CloudStore), after applying our approach,
the web requests with the injected performance regressions
always rank at the top 1st, i.e., with the highest effect. In ad-
dition, from Table 3, we observe that there is usually a large
difference (e.g., twice the effect) between the effect of the
web request with the performance regression (i.e., “Effect
with regressions” in Table 3) and the highest effect from the
web requests without injected performance regression (i.e.,
“Highest effect without regressions” in Table 3).

By a closer look at the gap between the effect with
regressions and the highest effect without regressions from
the evaluation results of the three open-source systems, we
noticed that our proposed approach may perform differ-
ently between the software systems and between different
injected regressions. In order to study such differences in
a statistically rigorous manner, we use a non-parametric
statistical hypothesis test called the Wilcoxon rank-sum
test [94] to determine whether there exists a statistically
significant difference (i.e., p-value < threshold) between the
gap between the effect with regressions and the Highest ef-
fect without regressions from different systems and between
different injected performance regressions. To counteract the
effect of multiple comparisons, in our study, the Bonferroni
correction [33] is used together with the Wilcoxon rank-sum
test [94] in the statistical analysis. For example, we have
three different systems TeaStore, OpenMRS, and CloudStore
to compare them pairwise, and in total there are three trials
of testing needed (i.e., TeaStore vs. OpenMRS, TeaStore vs.
CloudStore, and OpenMRS vs. CloudStore), so the Bonferroni
correction would test each individual hypothesis at the

threshold of 0.05 (original p-value threshold) / 3 (number
of testing trials) ≈ 0.017. From the statistical test results
between different open-source software systems presented
in Table 6, we observe that none of our three subject systems
(i.e., TeaStore, OpenMRS, and CloudStore) have statistically
significant difference (i.e., p-value > threshold) from the
other two subjects at the same time, which implies that
when applying our approach to the different subject systems
selected in this work, there exists no obvious difference
in the performance of locating the performance regression
root causes. We also perform such statistical analysis be-
tween different injected performance regressions, and from
the statistical test results between different performance
regressions summarized in Table 6, we find that all the
statistical test results (i.e., p-value) are above the significance
threshold, which indicates that there exist no significant dif-
ferences between the four injected performance regressions
(i.e., performance regression A to D) and the root causes for
these performance regressions are statistically equivalently
located by our approach.

On the other hand, from Table 5 which presents the
precision of the baseline approach of locating performance
regression root causes for TeaStore, OpenMRS, and Cloud-
Store, we observe that the baseline approach only achieves
an average precision of 0.11, 0.45, and 0.52 in TeaStore, Open-
MRS, and CloudStore, respectively, whereas our approach
can achieve the top-1 precision as high as 1.0. In particular,
when using the baseline approach to locate performance
regression root causes on TeaStore, all the precision values
are low (6 0.2). Such a low precision in the baseline ap-
proach would indicate that many root causes are located,
but only one of them is true positive. The false positives in
locating performance regression root causes in open-source
systems confirm our experience that practitioners from ES
have wasted much effort due to a large amount of false
positive results produced by the baseline approach in ES.

After identifying the web requests that are associated
with the performance regressions, our approach success-
fully matches the source code on the call graph of the
web requests where the arbitrarily injected synthetic per-
formance regressions locate in the source code. We would
like to note that there is one code change (i.e., changeset in
the context of ES) per regression and each has around 10 to
30 lines of changed source code.

7 A SUCCESS STORY FROM AN INDUSTRIAL DE-
PLOYMENT

Our approach has been deployed to locate root causes of
performance regressions for an industrial software system
(i.e., ES), on a daily basis. In particular, the first author
of this paper was embedded on-site with the development
team of ES for over a year to enable a faster feedback loop
from practitioners to guarantee the smooth adoption of our
approach in the large-scale complex industrial setting. In
this section, we present our results that are obtained from
the industrial deployment. The workload for system ES
used in our evaluation is not predetermined since ES is
deployed in a production environment and used by real end
users.

13

TABLE 3
Results of locating performance regression root causes for TeaStore, OpenMRS, and CloudStore

System Metrics Regression-A Regression-B Regression-C Regression-D
p1 p2 p3 p4 p1 p2 p3 p4 p1 p2 p3 p4 p1 p2 p3 p4

TeaStore Effect with regressions 0.07 0.06 0.07 0.08 0.08 0.06 0.06 0.12 0.09 0.08 0.06 0.13 0.10 0.06 0.07 0.09
Highest effect without regressions 0.01 n/a 0.01 0.03 0.01 0.02 0.02 n/a 0.03 0.04 0.04 0.03 n/a 0.01 0.01 0.05

OpenMRS Effect with regressions 0.06 0.10 0.08 0.10 0.06 0.08 0.07 0.06 0.07 0.15 0.14 0.11 0.09 0.06 0.08 0.13
Highest effect without regressions 0.03 n/a n/a 0.01 0.02 0.01 0.01 0.02 0.03 0.01 0.01 n/a 0.04 0.01 0.01 0.01

CloudStore Effect with regressions 0.15 0.12 0.20 0.08 0.09 0.07 0.09 0.08 0.14 0.12 0.11 0.21 0.14 0.14 0.05 0.11
Highest effect without regressions 0.01 0.07 0.04 0.05 0.01 0.01 0.02 n/a 0.02 0.01 0.03 0.02 0.02 0.04 n/a 0.06

Note 1: The “Regression-A” to “Regression-D” columns refer to the versions of the system where the performance regression is injected. For each performance regression, we separately inject that bug into four different positions, i.e.,
“p1” to “p4”.
Note 2: The value “n/a” of the “Highest effect without regressions” metric in the “Regression-A” to “Regressions-D” columns indicates that, in these versions, our approach generates only one candidate web request, i.e., the web
request with an injected regression.

TABLE 4
Model fit (i.e., R2) of the linear regression models built to model the relationship between the appearances of web requests and the performance

modeling errors for TeaStore, OpenMRS, and CloudStore

System No regressions Regression-A Regression-B Regression-C Regression-D
v0 p1 p2 p3 p4 p1 p2 p3 p4 p1 p2 p3 p4 p1 p2 p3 p4

TeaStore 0.30 0.54 0.36 0.56 0.40 0.70 0.63 0.72 0.45 0.40 0.65 0.66 0.59 0.62 0.56 0.75 0.50
OpenMRS 0.14 0.51 0.58 0.50 0.63 0.50 0.63 0.51 0.56 0.50 0.58 0.66 0.54 0.55 0.53 0.58 0.54
CloudStore 0.06 0.38 0.41 0.43 0.38 0.58 0.57 0.72 0.48 0.53 0.55 0.53 0.59 0.50 0.50 0.25 0.50

Note 1: “No regressions” column represents the version of the system without injected performance regressions and we call it “v0”. The “Regression-A” to “Regression-
D” columns refer to the versions of the system where the performance regression is injected. For each performance regression, we separately inject that bug into four
different positions, i.e., “p1” to “p4”.

TABLE 5
Precision of the baseline approach of locating performance regression

root causes for TeaStore, OpenMRS, and CloudStore

Type Position TeaStore OpenMRS CloudStore

Regression-A

p1 0.10 0.33 0.50
p2 0.11 0.33 0.14
p3 0.13 0.50 1.00
p4 0.07 0.07 1.00

Regression-B

p1 0.17 0.33 0.13
p2 0.09 0.25 1.00
p3 0.10 1.00 1.00
p4 0.06 0.25 0.13

Regression-C

p1 0.08 1.00 0.50
p2 0.20 0.33 0.25
p3 0.14 0.25 0.14
p4 0.13 0.25 0.25

Regression-D

p1 0.10 0.25 0.13
p2 0.10 0.50 1.00
p3 0.10 1.00 1.00
p4 0.07 0.50 0.13

Our approach can successfully locate more root causes
of real-world performance regressions with much higher
precision than the baseline approach

We have deployed our approach for all releases of ES
during the year 2020, which is a total of 22 releases without
any pre-known (for both developers and authors) perfor-
mance regressions. For each of the releases, we apply our
approach to the field data and hold a 30-minute to one-hour
meeting with the developers of ES to discuss the results in
order to know whether each located root cause is a true
positive result or a false positive result. The process of
the meetings is as follows: Before attending the meeting,
developers have no prior knowledge about our identified
performance regressions between the old version and the
new version of the system. During the meeting, we present
the results of the performance regression root causes deter-
mined by our approach and discuss them with the develop-
ers to confirm whether each located performance regression

TABLE 6
Statistical test results (i.e., p-value) of comparing the gap between the
effect with regressions and the highest effect without regressions from
different open-source systems and different performance regressions

Between different open-source systems
TeaStrore OpenMRS CloudStore

TeaStrore - 0.243 0.024
OpenMRS - 0.274

CloudStore -
Note 1: p-value threshold is 0.017 (corrected by Bonferroni correction).

Between different performance regressions
Reg-A Reg-B Reg-C Reg-D

Reg-A - 0.686 0.326 0.840
Reg-B - 0.112 0.665

Reg-C - 0.260
Reg-D -

Note 1: “Reg” is short for “Regression”.
Note 2: p-value threshold is 0.008 (corrected by Bonferroni correction).

root cause indeed results in the performance regressions
or not. After confirming the performance regression root
causes, developers would also inform us of the performance
regressions that are not identified by our approach, if there
exist any. In particular, we first discuss the ranked (by the
effect on the performance regression) list of web requests
that are associated with the performance regression with
developers. After that, we present the corresponding code
changes that change any methods along the call graph
related to the web requests. In addition, we also provide the
metadata of the commits that include these code changes,
e.g., commit hashes, timestamp, comment, committer, code
churn, and the code difference to assist developers in lo-
cating the performance regression root causes (cf. Step 5 in
Section 5).

From the meetings, we identified that three releases have
performance regressions and developers were not aware of
the existence of these performance regressions before. After

14

the discussions with developers, we confirmed that these
three releases indeed have performance regressions, and
the located root causes of these performance regressions
together with the corresponding code changes are also
confirmed by developers. Furthermore, we note that there
are no performance regressions that are known to devel-
opers but not detected by our approach. Specifically, there
are three commits associated with one regression, and one
commit associated with each of the other two regressions.
By further inspection of these commits, we observe that
these commits vary greatly in size, i.e., with a wide range
of changed source lines of code (SLOC) from 20 to 170.
Based on the multifaceted information we have provided,
developers can save a lot of time and effort while requiring
relatively less expert knowledge to locate and fix the root
causes of performance regressions compared to manually
going through all the code changes between the old and
new releases. For the other releases, the developers of ES
have not yet known or received any reported performance
issues from the end users as of the time of writing this
paper. However, since the evaluation is conducted in a real-
life industrial setting, without any pre-known performance
regressions, we cannot make an assertion that these releases
are free of performance regressions.

Table 7 summarizes the results of applying both base-
line approach and our approach to locate the performance
regression root causes for the industrial system (i.e., ES). In
particular, for the 22 releases of ES, our approach has identi-
fied 4 releases containing performance regressions and there
are 6 performance regression root causes located in these
releases. After meeting with industry partners, we confirm
that 3 of them are true positives, which shows that our
approach achieves the precision at 50%. Our approach can
also successfully locate the root causes of these performance
regressions and provide corresponding code changes. It is
worth point out that we choose the threshold of effect
at 0.04 in the industrial system (i.e., ES) to determine the
performance regression root causes from a list of potential
candidates (i.e., significant variables in the regression model
(cf. Section 5)), we make this choice since in the results
from the open-source subjects, the average highest effect
without regression are around 0.05 and the average effect
with regression are above 0.05, so based on this finding,
we choose a relatively conservative threshold at 0.04 to not
miss anything in the industrial environment. Whereas for
the baseline approach, 18 out of 22 releases are deemed
to have performance regressions and a total of 65 web
requests have significantly slower response time (i.e., p-
value < 0.05 and effect size is large) in the new version
than in the old version, thus are located as the root causes
of the performance regressions. Among these located root
causes, only two of them are true positive, which shows the
baseline has a low precision at only 3.08%. The results show
that although we chose a rather strict threshold, the baseline
still suffers from very low precision (a lot of false positives).
On the other hand, although we don’t know the true recall of
our approach and the baseline approaches, we do know that
one true positive case detected by our approach is missed
by the baseline approach. In other words, even though with
a low precision of the baseline approach, its recall is still
lower than our approach.

TABLE 7
Results of locating performance regression root causes for the

industrial system (i.e., ES).

Baseline Our
approach approach

Total # releases 22
releases with detected performance

regressions 18 4

releases with confirmed performance
regressions 3 3

located root causes 65 6
confirmed root causes 2 3

Precision 3.08% 50%

Note: The 3 releases with confirmed performance regressions from the baseline
approach and that from our approach are the same.

For the releases with the confirmed performance regres-
sions, we conduct further investigation to reveal how the
performance regressions are introduced. The first perfor-
mance regression our approach located is a code change
in which developers added nested code loops whose com-
putation has repetitive and partially similar patterns across
loop iterations. The outer loop iterates over all the items
in a data set and each item calls a method x, which in
turns calls another method y. The inner loop in method y
makes computations on all the items in that data set. The
repeated computation is redundant and can be performed
only once, as the values of the items do not change between
the calls. The outer loop amplifies the performance penalty
of the inner loop, which makes the performance regression
even more severe. This regression was not identified by
code review as it involves the interaction between multiple
methods.

From the second located performance regression root
cause, we observed that in the new version, developers
added a complex SQL query that joins multiple temporary
tables in order to load some employee-related information.
However, such tables lack indexes and the query is fre-
quently executed, both of the factors make the correspond-
ing query suffer from the performance regression. After we
discussed with the developers who are responsible for this
module, we confirmed this performance regression to the
software.

The third performance regression located by our ap-
proach is caused by an inefficient SQL query that is business
logic-related within a SQL stored procedure. After discus-
sion and confirmation with developers, they optimized this
query in the next release to provide the service in a much
faster manner and consume fewer hardware resources (e.g.,
CPU).

Finally, by a close examination of the detection results of
the 22 releases, we find that model fit (R2) of the model that
captures the relationship between the appearances of web
requests and the deviance of modeling errors (step 4 in our
approach) can be an effective indicator for differentiating
releases with and without confirmed performance regres-
sions. Specifically, the R2 of the versions with the confirmed
performance regression is up to 0.25, with an average value
of 0.21; while for the other releases, the maximum R2 is

15

only 0.15, with an average value of 0.05. In addition, the
effect values that are calculated in step 5 of our approach
can also be used as an effective indicator. The confirmed
root cause has an average effect of 0.05, while the effect
from the other releases have the maximum of only 0.038
with an average value of 0.02. Such results also confirm with
the evaluation of our approach on the open-source subject
systems (cf. Section 6) that we can adopt the model fit (R2)
and the effect values as indicators to effectively identify the
performance regression root causes.

8 LESSONS LEARNED

In this section, we summarize the lessons that we learned
from addressing the challenges during designing our ap-
proach and adopting our approach in the industry setting,
in order to provide insights for researchers and practi-
tioners who are interested in locating the root causes of
performance regressions using the field-operation data. The
corresponding faced challenges and solutions are described
in Section 4.

Lessons learned from challenge 1

Black-box performance models can capture the relation-
ship between the performance of a system and its dynamic
activities in the field-operation environment. Software
systems usually produce logs (e.g., web-access logs) at run-
time, in order to track, monitor, and debug system runtime
activities. Our study confirms that such readily available
logs can be used to understand the system performance.
In order to understand how effective the black-box models
are in capturing the relationship between the performance
of a software system and its runtime activities, we build the
black-box performance models on the data from the version
of the software system without performance regressions. We
then calculate the mean absolute percentage error (MAPE)
of the models as the metrics to evaluate the effectiveness of
the model. In particular, we measure the prediction errors
(i.e., MAPE) using 10-fold cross-validation to avoid the bias
of having the same training and testing data. From the
results, we find that, using a simple black-box model (i.e.,
a random forest regression model) can already achieve a
high modeling performance with low MAPE at the value of
5.91%, 5.15%, and 8.28% for TeaStore, OpenMRS, and Cloud-
Store, respectively, which demonstrates high effectiveness of
using black-box models to capture the relationship between
the system runtime activities and its performance.

Without the need for the knowledge of the system inter-
nal behaviors, black-box models rely on logs to model sys-
tem performance. Black-box models are particularly helpful
when the system is under field-operation where the work-
loads and the system itself are constantly evolving.�

�

�

�
Without the knowledge of system internal behaviors,
black-box performance models can help understand the
relationship between the performance of a system and its
runtime activities in the field-operation environment.

Lessons learned from challenge 2

Removing the collinearity and redundancy among sys-
tem runtime activities can improve the performance of
the black-box models. Some of the system runtime ac-
tivities may be highly correlated and provide redundant
information, which can adversely impact the robustness of
the black-box performance models. We also explore how
the degrees of correlation between independent variables
affect the performance of our approach, i.e., locate the
performance regressions root causes using just the field-
operation data of software systems. For example, table 8
shows the measured results when applying our approach to
the TeaStore subject system with and without reducing the
highly correlated and redundant system activities. From the
table, we can see that, by applying the correlation analysis
and redundancy analysis one can significantly reduce the
number of the variables (i.e., from 32 to 8) and achieve a
higher value of R2 (i.e., 0.541) than not doing so (i.e., 0.402).
Our results also confirm with prior work [14, 101] that the
collinearity and redundancy among the independent vari-
ables may have a negative impact on fitting and interpreting
the models. More importantly, since the model without the
variable reduction has lower performance (i.e., lower R2

value), the relationship between the problematic runtime
activities and performance regressions may not be well cap-
tured (i.e., cannot identify system activities associated with
regressions). In contrast, the model with reduced variables
can successfully locate the root cause of the performance
regressions. In this case, performing correlation analysis and
redundancy analysis can boost the performance of the black-
box performance models.

Correlation and redundancy analysis may risk ignor-
ing the system runtime activities that actually cause the
performance regression. During the regular meetings with
our industrial collaborator, we find that the removed highly
correlated or redundant independent variables can be asso-
ciated with the system runtime activities that lead to per-
formance regressions. Therefore, we simply and practically
maintain a mapping between the removed independent
variables and the remaining ones to help avoid missing
possible root causes of the performance regression.�

�

�

�

Removing the collinearity and redundancy among the
independent variables can improve black-box perfor-
mance models. However, one needs to pay attention
to the removed independent variables as they may be
associated with the system runtime activities that lead
to the performance regression.

TABLE 8
An example of the influence of collinearity and redundancy among

system runtime activities from TeaStore

Metrics Without reducing
variables

With reducing
variables

Variables 34 8
R2 0.402 0.541

Rank of the root cause
of the regression

n/a 1

16

Lessons learned from challenge 3
Statistical techniques can be used to identify system ac-
tivities related to performance regressions. Many of the ex-
isting approaches in finding performance root causes need
to rely on performance testing which is conducted in an in-
house testing environment with predetermined workloads
or they can only locate the performance regressions root
cause at a relatively high level (e.g., service level). On the
other hand, based on our results, we observe that, when the
system runs in a production environment, statistical tech-
niques (e.g., linear regression) can be effectively leveraged to
identify the system activities that are related to performance
regressions.

Ranking the system activities that are related to a
performance regression can help developers prioritize
their effort. There are still considerable resources and efforts
needed to manually check all the system activities related
to a performance regression. Therefore, we use statistical
techniques to prioritize the candidate system activities that
may cause the performance regression to help developers
optimize their resources and efforts.�
�

�
�

Statistical techniques (e.g., linear regression) can be used
to identify and prioritize system runtime activities re-
lated to a performance regression.

Lessons learned from challenge 4
A combination of code-level recommendations and high-
level guidelines for developers can improve their analysis
of the causes of performance regressions. Using static
program analysis to recommend the code changes that
are related to performance regressions can help developers
narrow down the causes of performance regressions. In
addition, as system performance is usually complicated
and most of the developers from our industrial partner
are not experts in system performance, we also provide
developers with high-level performance guidelines from
previous research, e.g., introducing locks and synchroniza-
tion may introduce performance regressions. Both the code-
level recommendations and the high-level guidelines can
assist developers in diagnosing the causes of performance
regressions.

The granularity of locating the code changes leading to
performance regressions is a trade-off. Locating the code
changes at a high granularity, like the directory or file level,
can be much easier to achieve. However, developers still
need much effort to gain insight into the provided scope.
On the other hand, locating the code changes at a low
granularity, like instruction or line level, can provide much
detailed information, while it is more difficult to achieve
this granularity since performance regressions are often
introduced not with merely a single line of code [37]. After
discussing with the developers of our industrial partner, we
choose to locate code changes at the method level as it is
sufficient for them to understand and fix the performance
issue.�
�

�
�

Providing code-level recommendations together with
high-level performance guidelines can assist developers
in understanding and fixing performance regressions.

Lessons learned from challenge 5
Finding a balance between the monitoring accuracy and
the monitoring overhead is crucial. System monitoring
infrastructures usually come with performance overhead.
When applying research to practice, we would suggest that
it is of great importance to minimize the performance over-
head of our approach while keeping sufficient monitoring
accuracy.

Visualization can assist in the adoption of our ap-
proach in our industry partner’s environment. By visual-
izing the working mechanism of our approach, developers
use our approach more frequently. In addition, visualization
also improves the efficiency of analyzing the root causes
of performance regressions. In particular, we present the
screenshots of the major parts of the Elastic Stack unified
management platform in our industrial environment in
Figure 3. We would like to note that the actual detected
URLs and the changeset ids are anonymized with black
color since they contain confidential information from our
industrial collaborator. Specifically, there are three main
components in our Elastic Stack platform: 1) Visualization
of CPU prediction error. As shown in Figure 3a, this com-
ponent presents the actual target performance metrics (i.e.,
CPU) in the blue line, the predicted performance metrics by
the performance model in the red line, and the prediction
errors (i.e., calculated by the absolute difference between
actual and predicted performance metrics) in yellow bars;
2) Visualization of the baseline approach’s result. As shown
in Figure 3b, this component visualizes the performance
regression root cause located results from the baseline ap-
proach including effect size, effect size category, whether it
is faster or slower in the new version compared to the old
version for each URL; 3) Visualization of our approach’s
result. As shown in Figure 3c, this component presents the
results of locating performance regression root cause which
include a list of URLs, and for each URL we also show the
corresponding effect and the ID of associated code changes
(i.e. ”RELATED CHANGESET”) during the release period.
If we cannot find code changes that are associated with the
URL, we then mark it as ”n/a”. Components 2) and compo-
nent 3) also indicate the release date information of the old
and new versions in columns ”OLD VERSION START”,
”OLD VERSION END”, ”NEW VERSION START” and
”NEW VERSION END”. In summary, we have a sugges-
tion for developers that an interactive visualization is crucial
for the successful transfer of research into practice.�

�

�

�

Finding an optimal balance between the monitoring
accuracy and the monitoring overhead is crucial to the
adoption of our approach in practice. In addition, visual-
izing the working mechanism of our approach improves
the understandability and usability of our approach.

9 THREATS TO VALIDITY

This section discusses the threats to the validity of our study.
External validity. In our approach, we target locating perfor-
mance regression root causes for just the web-based systems
for the following considerations: first, the state of practice
is an important starting point that motivates our study
and the studied industrial system (i.e., ES) is a commercial

17

(a) Visualization of CPU prediction error

Anonymized URL

Anonymized URL

Anonymized URL

Anonymized URL

Anonymized URL

Anonymized URL

(b) Visualization of the baseline approach’s result

Anonymized URL Anonymized Changeset

Anonymized URL

Anonymized URL

Anonymized URL

Anonymized Changeset

(c) Visualization of our approach’s result

Fig. 3. Screenshot of our Elastic Stack unified management platform

Note 1: Our approach locates 4 instead of 394 performance regression root causes.
Note 2: The URL and related changeset are known to the authors, but are anonymized due to the NDA.

web-based software system that is developed with .NET
framework and deployed in the Microsoft IIS (Internet Infor-
mation Services) web server; second, the system access logs
are the minimum requirement in our proposed approach as
such access logs represent the workload of the web-based
system during a period of execution; last but not least,
unlike other systems (e.g., mail server applications), the web
servers in which the web-based systems are deployed, such
as Jetty, Tomcat, and IIS web servers, are able to automati-
cally generate the system access logs during system runtime.
More investigation and studies on locating performance
regression root causes on other types of systems is in our
ongoing future work.

Our study is only conducted on one industrial system
(i.e., ES) and three open-source projects (e.g., TeaStore, Open-
MRS, and CloudStore). The three open-source projects are
all benchmark systems and they do not aim to demonstrate
the quality of the development process, thus, there may be
performance issues in the system, but these issues are not
indicated in the development history. Since we do not have
the evidence of historical performance regressions of specific
versions via checking the system version history, we manu-

ally injected four types of synthetic performance regressions
that are described in Section 6. Although the practice and
results from the industrial deployment of our approach can
compensate for the open-source experiments for demon-
strating the effectiveness of the proposed approach, more
case studies on other software systems with other types of
performance regressions can benefit the evaluation of our
approach.

Construct validity. In our work, we use traditional system
monitoring tools (e.g., pidstat) to collect the system runtime
performance data (e.g., CPU usage). The quality of the
recorded system performance data may be a threat to the
construct validity of this study. Besides, we use the CPU
usage as our performance metric to locate performance
regression root causes since in the case of our industrial
system and the studied open-source systems, CPU usage
is the main concern in performance regressions. However,
our approach is not limited to the performance metric of
CPU usage. Evaluation with more performance metrics may
lead to a better understanding of the applicability of our
approach. Similarly, practitioners can consider other per-
formance metrics that are appropriate in their own context

18

while applying our approach to solve their problems.
Internal validity. Our approach captures the relationship
between the system runtime activities and the measured
performance of a system. In order to achieve that, we utilize
machine learning techniques to model such a relationship.
Although our models achieve a good fit, we admit that the
relationship between the runtime activities recorded in the
logs and the measured system performance does not neces-
sarily suggest a causal relationship between them. Another
threat to the validity of our work is that in the experiments
of open-source subjects, the locations in the system source
code where we inject the synthetic performance regression
are arbitrarily chosen without the preference for any specific
locations (i.e., to avoid the bias that may be introduced by
injecting performance regressions in a particular location).
However, such arbitrarily determined injected locations
in the source code are selected through an unsystematic
manual process, therefore, they may still be influenced by
subjective factors. To mitigate this threat, we opt to sepa-
rately inject each synthetic performance regression in four
different arbitrarily selected places in the source code, which
makes up a total of 16 different versions with performance
regressions per open-source system.

Our approach aims to automatically locate the root
causes of performance regressions while without the need
for performance testing (i.e., requiring just the field-
operation data of software systems). However, since the
software systems are already running in the production
environment, if the version of deployed system indeed has
performance regressions and run in the field for hours or
days before discovering these performance regressions, the
delay in locating the performance regressions root causes
may potentially pose an adverse impact (e.g., higher re-
source utilization, slow user response, and even financial
losses) on the end users and the company. In addition, we
are aware that if a new version has fundamentally different
features (i.e., different types of runtime activities) that do
not exist in the old version, the model constructed on the
old version would not have the knowledge about the perfor-
mance impact of the new features, making it impractical to
compare performance models between these two versions.
Hence, our approach is not applicable to locate root causes
of performance regressions introduced by the features that
only exist in the new version.

10 CONCLUSIONS

In this paper, we provide an experience report on the
challenges and lessons learned from designing and adopting
our automated approach for locating performance regres-
sions root causes in practice. Our approach uses the readily
available web-access logs (by default generated by the web
servers) and performance metrics that are directly generated
when the system is running in the field (i.e., interacting
with end users) without the need of time and resource-
consuming in-house performance testing. In particular, our
approach relies on machine learning models and statistical
techniques to identify the factors that contribute to the dif-
ference between the models built on two software releases.
By evaluating our approach on three popular open-source

projects (i.e., TeaStore, OpenMRS, and CloudStore) and apply-
ing our approach on a large-scale industrial system (i.e., ES),
we find that our approach can successfully locate the root
causes of both the arbitrarily injected synthetic performance
regressions in the open-source systems and the real-world
performance regressions in a large-scale industrial system.
We believe that our approach and documented experience
can benefit both practitioners and researchers on the use
of field-operation data as a main source to conduct perfor-
mance assurance activities during their fast-paced software
development and releasing cycles.

ACKNOWLEDGMENT

We would like to thank ERA Environmental Management
Solutions for providing access to the enterprise system used
in our study. The findings and opinions expressed in this
paper are those of the authors and do not necessarily rep-
resent or reflect those of ERA Environmental Management
Solutions and/or its subsidiaries and affiliates. Moreover,
our results do not reflect the quality of ERA Environmental
Management Solutions’ products.

REFERENCES

[1] “How one second could cost amazon $1.6 billion
in sales,” https://www.fastcompany.com/1825005/
how-one-second-could-cost-amazon-16-billion-sales/,
2012, Last accessed 05/6/2020.

[2] “Canary release,” https://martinfowler.com/bliki/
CanaryRelease.html, 2014, Last accessed 05/8/2020.

[3] “The cost of performance issues,” https://focusaps.
com/2019/09/26/the-costs-of-performance-issues/,
2019, Last accessed 05/8/2020.

[4] “Tpc benchmark w (tpc-w),” http://www.tpc.org/
tpcw/, 2019, Last accessed 05/7/2020.

[5] “Apache jmeter - apache jmeter™,” https://jmeter.
apache.org/, 2020, Last accessed 03/8/2020.

[6] “Apache tomcat® - welcome!” http://tomcat.apache.
org/, 2020, Last accessed 05/8/2020.

[7] “cloc - count lines of code,” https://github.com/
AlDanial/cloc/, 2020, Last accessed 06/7/2020.

[8] “Cloudscale project,” https://www.cloudscale-project.
eu/, 2020, Last accessed 05/9/2020.

[9] “Cloudscale-project/cloudstore,” https://github.com/
CloudScale-Project/CloudStore, 2020, Last accessed
05/9/2020.

[10] “Eclipse java development tools (jdt),” https://www.
eclipse.org/jdt/, 2020, Last accessed 03/6/2020.

[11] “Elastic stack: Elasticsearch, kibana, beats & logstash
— elastic,” https://www.elastic.co/elastic-stack/, 2020,
Last accessed 04/8/2020.

[12] “Google cloud: Cloud computing services,” https://
cloud.google.com/, 2020, Last accessed 05/8/2020.

[13] “Mozilla performance regressions policy,”
https://www.mozilla.org/en-US/about/governance/
policies/regressions/, 2020, Last accessed 05/8/2020.

[14] “Multicollinearity in regression analysis: Problems,
detection, and solutions,” https://statisticsbyjim.com/
regression/multicollinearity-in-regression-analysis/,
2020, Last accessed 03/8/2020.

[15] “The .net compiler platform sdk,” https://docs.
microsoft.com/en-ca/dotnet/csharp/roslyn-sdk/, 2020,
Last accessed 03/8/2020.

[16] “Openmrs,” https://openmrs.org/, 2020, Last accessed
05/10/2020.

https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales/
https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales/
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/CanaryRelease.html
https://focusaps.com/2019/09/26/the-costs-of-performance-issues/
https://focusaps.com/2019/09/26/the-costs-of-performance-issues/
http://www.tpc.org/tpcw/
http://www.tpc.org/tpcw/
https://jmeter.apache.org/
https://jmeter.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
https://github.com/AlDanial/cloc/
https://github.com/AlDanial/cloc/
https://www.cloudscale-project.eu/
https://www.cloudscale-project.eu/
https://github.com/CloudScale-Project/CloudStore
https://github.com/CloudScale-Project/CloudStore
https://www.eclipse.org/jdt/
https://www.eclipse.org/jdt/
https://www.elastic.co/elastic-stack/
https://cloud.google.com/
https://cloud.google.com/
https://www.mozilla.org/en-US/about/governance/policies/regressions/
https://www.mozilla.org/en-US/about/governance/policies/regressions/
https://statisticsbyjim.com/regression/multicollinearity-in-regression-analysis/
https://statisticsbyjim.com/regression/multicollinearity-in-regression-analysis/
https://docs.microsoft.com/en-ca/dotnet/csharp/roslyn-sdk/
https://docs.microsoft.com/en-ca/dotnet/csharp/roslyn-sdk/
https://openmrs.org/

19

[17] “pidstat(1): Report statistics for tasks - linux man
page,” https://linux.die.net/man/1/pidstat, 2020, Last
accessed 05/6/2020.

[18] R. Abreu and A. J. C. van Gemund, “A low-cost approxi-
mate minimal hitting set algorithm and its application to
model-based diagnosis,” in Eighth Symposium on Abstrac-
tion, Reformulation, and Approximation, SARA 2009, Lake
Arrowhead, California, USA, 8-10 August 2009. AAAI,
2009.

[19] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “An
evaluation of similarity coefficients for software fault
localization,” in 12th IEEE Pacific Rim International Sym-
posium on Dependable Computing (PRDC 2006), 18-20 De-
cember, 2006, University of California, Riverside, USA. IEEE
Computer Society, 2006, pp. 39–46.

[20] S. Adler, “The slashdot effect: an analysis of three internet
publications,” Linux Gazette, vol. 38, no. 2, p. 623, 1999.

[21] H. Agrawal, R. A. DeMillo, and E. H. Spafford, “De-
bugging with dynamic slicing and backtracking,” Softw.
Pract. Exp., vol. 23, no. 6, pp. 589–616, 1993.

[22] Z. A. Al-Khanjari, M. R. Woodward, H. A. Ramadhan,
and N. S. Kutti, “The efficiency of critical slicing in fault
localization,” Softw. Qual. J., vol. 13, no. 2, pp. 129–153,
2005.

[23] J. P. S. Alcocer, A. Bergel, and M. T. Valente, “Learning
from source code history to identify performance fail-
ures,” in Proceedings of the 7th ACM/SPEC International
Conference on Performance Engineering, ICPE 2016, Delft,
The Netherlands, March 12-16, 2016, A. Avritzer, A. Iosup,
X. Zhu, and S. Becker, Eds. ACM, 2016, pp. 37–48.

[24] E. R. Altman, M. Arnold, S. Fink, and N. Mitchell, “Per-
formance analysis of idle programs,” in Proceedings of the
25th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOP-
SLA 2010, October 17-21, 2010, Reno/Tahoe, Nevada, USA,
W. R. Cook, S. Clarke, and M. C. Rinard, Eds. ACM,
2010, pp. 739–753.

[25] E. Alves, M. Gligoric, V. Jagannath, and M. d’Amorim,
“Fault-localization using dynamic slicing and change im-
pact analysis,” in 26th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2011), Lawrence,
KS, USA, November 6-10, 2011. IEEE Computer Society,
2011, pp. 520–523.

[26] M. Arif, W. Shang, and E. Shihab, “An empirical study
on the discrepancy between performance testing results
from virtual and physical environments,” Empirical Soft-
ware Engineering, p. To Appear, 2017.

[27] G. K. Baah, A. Podgurski, and M. J. Harrold, “The proba-
bilistic program dependence graph and its application to
fault diagnosis,” IEEE Trans. Software Eng., vol. 36, no. 4,
pp. 528–545, 2010.

[28] T. Ball and J. R. Larus, “Optimally profiling and tracing
programs,” ACM Trans. Program. Lang. Syst., vol. 16, no. 4,
pp. 1319–1360, 1994.

[29] C. Barna, M. Litoiu, and H. Ghanbari, “Autonomic load-
testing framework,” in Proceedings of the 8th ACM Interna-
tional Conference on Autonomic Computing, 2011, p. 91–100.

[30] J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson cor-
relation coefficient,” in Noise reduction in speech processing.
Springer, 2009, pp. 1–4.

[31] C. Bezemer, S. Eismann, V. Ferme, J. Grohmann, R. Hein-
rich, P. Jamshidi, W. Shang, A. van Hoorn, M. Villavicen-
cio, J. Walter, and F. Willnecker, “How is performance ad-
dressed in devops?” in Proceedings of the 2019 ACM/SPEC
International Conference on Performance Engineering, ICPE
2019, Mumbai, India, April 7-11, 2019. ACM, 2019, pp.
45–50.

[32] A. B. Bondi, Foundations of software and system perfor-
mance engineering: process, performance modeling, require-
ments, testing, scalability, and practice. Pearson Education,

2015.
[33] C. Bonferroni, “Teoria statistica delle classi e calcolo delle

probabilita,” Pubblicazioni del R Istituto Superiore di Scienze
Economiche e Commericiali di Firenze, vol. 8, pp. 3–62, 1936.

[34] L. Breiman and P. Spector, “Submodel selection and
evaluation in regression. the x-random case,” International
statistical review/revue internationale de Statistique, pp. 291–
319, 1992.

[35] P. Cellier, M. Ducassé, S. Ferré, and O. Ridoux, “Formal
concept analysis enhances fault localization in software,”
in Formal Concept Analysis, 6th International Conference,
ICFCA 2008, Montreal, Canada, February 25-28, 2008, Pro-
ceedings, ser. Lecture Notes in Computer Science, vol.
4933. Springer, 2008, pp. 273–288.

[36] ——, “Multiple fault localization with data mining,” in
Proceedings of the 23rd International Conference on Software
Engineering & Knowledge Engineering (SEKE’2011), Eden
Roc Renaissance, Miami Beach, USA, July 7-9, 2011. Knowl-
edge Systems Institute Graduate School, 2011, pp. 238–
243.

[37] J. Chen and W. Shang, “An exploratory study of per-
formance regression introducing code changes,” in 2017
IEEE International Conference on Software Maintenance and
Evolution, ICSME 2017, Shanghai, China, September 17-22,
2017. IEEE Computer Society, 2017, pp. 341–352.

[38] M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and
E. Brewer, “Failure diagnosis using decision trees,” In-
ternational Conference on Autonomic Computing, 2004. Pro-
ceedings., pp. 36–43, 2004.

[39] T. Chen, M. D. Syer, W. Shang, Z. M. Jiang, A. E.
Hassan, M. Nasser, and P. Flora, “Analytics-driven load
testing: An industrial experience report on load testing of
large-scale systems,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering: Software Engineering in
Practice Track (ICSE-SEIP), 2017, pp. 243–252.

[40] N. Cliff, Ordinal methods for behavioral data analysis. Psy-
chology Press, 2014.

[41] J. Cohen, Statistical Power Analysis for the Behavioral Sci-
ences. Routledge, 1988.

[42] D. S. Coutant, S. Meloy, and M. Ruscetta, “Doc: A
practical approach to source-level debugging of globally
optimized code,” in Proceedings of the ACM SIGPLAN 1988
conference on Programming language design and implementa-
tion, 1988, pp. 125–134.

[43] V. Debroy, W. E. Wong, X. Xu, and B. Choi, “A grouping-
based strategy to improve the effectiveness of fault local-
ization techniques,” in Proceedings of the 10th International
Conference on Quality Software, QSIC 2010, Zhangjiajie,
China, 14-15 July 2010. IEEE Computer Society, 2010,
pp. 13–22.

[44] D. Didona, F. Quaglia, P. Romano, and E. Torre, “Enhanc-
ing performance prediction robustness by combining an-
alytical modeling and machine learning,” in Proceedings of
the 6th ACM/SPEC International Conference on Performance
Engineering, Austin, TX, USA, Jan 31 - Feb 4, 2015, 2015,
pp. 145–156.

[45] Z. Ding, J. Chen, and W. Shang, “Towards the use of
the readily available tests from the release pipeline as
performance tests: are we there yet?” in ICSE ’20: 42nd In-
ternational Conference on Software Engineering, Seoul, South
Korea, 27 June - 19 July, 2020, G. Rothermel and D. Bae,
Eds. ACM, 2020, pp. 1435–1446.

[46] J. C. Edwards, “Method, system, and program for logging
statements to monitor execution of a program,” Mar. 25
2003, uS Patent 6,539,501.

[47] S. Eismann, C. Bezemer, W. Shang, D. Okanovic, and
A. van Hoorn, “Microservices: A performance tester’s
dream or nightmare?” in ICPE ’20: ACM/SPEC Interna-
tional Conference on Performance Engineering, Edmonton,
AB, Canada, April 20-24, 2020, 2020, pp. 138–149.

https://linux.die.net/man/1/pidstat

20

[48] K. C. Foo, Z. M. Jiang, B. Adams, A. E. Hassan, Y. Zou,
and P. Flora, “An industrial case study on the automated
detection of performance regressions in heterogeneous
environments,” in 37th IEEE/ACM International Conference
on Software Engineering, ICSE 2015, Florence, Italy, May 16-
24, 2015, Volume 2, 2015, pp. 159–168.

[49] D. Freedman, Statistical Models : Theory and Practice.
Cambridge University Press, August 2005.

[50] R. Gao, Z. M. Jiang, C. Barna, and M. Litoiu, “A frame-
work to evaluate the effectiveness of different load testing
analysis techniques,” in 2016 IEEE International Conference
on Software Testing, Verification and Validation (ICST), 2016,
pp. 22–32.

[51] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel,
“The cost of a cloud: Research problems in data center
networks,” SIGCOMM Comput. Commun. Rev., vol. 39,
no. 1, p. 68–73, 2009.

[52] B. Gregg, Systems performance: enterprise and the cloud.
Pearson Education, 2014.

[53] H. W. Gunther, “WebSphere Application Server Perfor-
mance and Scalability,” IBM WebSphere Application Server
Standard and Advanced Editions - White paper, 2000.

[54] F. E. Harrell Jr, Regression modeling strategies: with appli-
cations to linear models, logistic and ordinal regression, and
survival analysis. Springer, 2015.

[55] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi,
“An empirical investigation of the relationship between
spectra differences and regression faults,” Softw. Test.
Verification Reliab., vol. 10, no. 3, pp. 171–194, 2000.

[56] M. Hauswirth and T. M. Chilimbi, “Low-overhead mem-
ory leak detection using adaptive statistical profiling,”
in Proceedings of the 11th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, ASPLOS 2004, Boston, MA, USA, October 7-13,
2004. ACM, 2004, pp. 156–164.

[57] S. He, Q. Lin, J. Lou, H. Zhang, M. R. Lyu, and D. Zhang,
“Identifying impactful service system problems via log
analysis,” in Proceedings of the 2018 ACM Joint Meeting on
European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/SIGSOFT
FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018,
2018, pp. 60–70.

[58] C. Heger, J. Happe, and R. Farahbod, “Automated root
cause isolation of performance regressions during soft-
ware development,” in ACM/SPEC International Confer-
ence on Performance Engineering, ICPE’13, Prague, Czech
Republic - April 21 - 24, 2013, S. Seelam, P. Tuma, G. Casale,
T. Field, and J. N. Amaral, Eds. ACM, 2013, pp. 27–38.

[59] J. Hennessy, “Symbolic debugging of optimized code,”
ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 4, no. 3, pp. 323–344, 1982.

[60] J. Humble and G. Kim, Accelerate: The science of lean
software and devops: Building and scaling high performing
technology organizations. IT Revolution, 2018.

[61] H. Jayathilaka, C. Krintz, and R. Wolski, “Performance
monitoring and root cause analysis for cloud-hosted web
applications,” in Proceedings of the 26th International Con-
ference on World Wide Web, WWW 2017, Perth, Australia,
April 3-7, 2017, R. Barrett, R. Cummings, E. Agichtein,
and E. Gabrilovich, Eds. ACM, 2017, pp. 469–478.

[62] Z. M. Jiang and A. E. Hassan, “A survey on load testing of
large-scale software systems,” IEEE Trans. Software Eng.,
vol. 41, no. 11, pp. 1091–1118, 2015.

[63] B. Johansson, A. V. Papadopoulos, and T. Nolte, “Con-
currency defect localization in embedded systems using
static code analysis: An evaluation,” in IEEE International
Symposium on Software Reliability Engineering Workshops,
ISSRE Workshops 2019, Berlin, Germany, October 27-30,
2019. IEEE, 2019, pp. 7–12.

[64] G. H. John and P. Langley, “Estimating continuous distri-

butions in bayesian classifiers,” CoRR, vol. abs/1302.4964,
2013.

[65] S. Khanduja, V. Nair, S. Sundararajan, A. Raul, A. B. Shaj,
and S. Keerthi, “Near real-time service monitoring using
high-dimensional time series,” in 2015 IEEE International
Conference on Data Mining Workshop (ICDMW), 2015, pp.
1624–1627.

[66] G. Kim, J. Humble, P. Debois, and J. Willis, The DevOps
handbook: How to create world-class agility, reliability, and
security in technology organizations. IT Revolution, 2016.

[67] E. Kocaguneli and T. Menzies, “Software effort models
should be assessed via leave-one-out validation,” J. Syst.
Softw., vol. 86, no. 7, pp. 1879–1890, 2013.

[68] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C.
Sevcik, Quantitative system performance: computer system
analysis using queueing network models. Prentice-Hall, Inc.,
1984.

[69] S. Lu, B. Rao, X. Wei, B. Tak, L. Wang, and L. Wang, “Log-
based abnormal task detection and root cause analysis
for spark,” in 2017 IEEE International Conference on Web
Services, ICWS 2017, Honolulu, HI, USA, June 25-30, 2017.
IEEE, 2017, pp. 389–396.

[70] Q. Luo, D. Poshyvanyk, and M. Grechanik, “Mining per-
formance regression inducing code changes in evolving
software,” in Proceedings of the 13th International Conference
on Mining Software Repositories, MSR 2016, Austin, TX,
USA, May 14-22, 2016, M. Kim, R. Robbes, and C. Bird,
Eds. ACM, 2016, pp. 25–36.

[71] H. Malik, H. Hemmati, and A. E. Hassan, “Automatic
detection of performance deviations in the load testing
of large scale systems,” in Proceedings of the 2013 Inter-
national Conference on Software Engineering, ser. ICSE ’13.
Piscataway, NJ, USA: IEEE Press, 2013, pp. 1012–1021.

[72] D. Maplesden, K. von Randow, E. D. Tempero, J. G.
Hosking, and J. C. Grundy, “Performance analysis using
subsuming methods: An industrial case study,” in 37th
IEEE/ACM International Conference on Software Engineer-
ing, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 2,
A. Bertolino, G. Canfora, and S. G. Elbaum, Eds. IEEE
Computer Society, 2015, pp. 149–158.

[73] L. Mariani, C. Monni, M. Pezzé, O. Riganelli, and R. Xin,
“Localizing faults in cloud systems,” in 2018 IEEE 11th
International Conference on Software Testing, Verification and
Validation (ICST), 2018, pp. 262–273.

[74] C. Mateis, M. Stumptner, and F. Wotawa, “Modeling java
programs for diagnosis,” in ECAI 2000, Proceedings of the
14th European Conference on Artificial Intelligence, Berlin,
Germany, August 20-25, 2000. IOS Press, 2000, pp. 171–
175.

[75] W. Mayer and M. Stumptner, “Modeling programs with
unstructured control flow for debugging,” in AI 2002:
Advances in Artificial Intelligence, 15th Australian Joint Con-
ference on Artificial Intelligence, Canberra, Australia, Decem-
ber 2-6, 2002, Proceedings, ser. Lecture Notes in Computer
Science, vol. 2557. Springer, 2002, pp. 107–118.

[76] A. Mockus, “Organizational volatility and its effects on
software defects,” in Proceedings of the Eighteenth ACM
SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, 2010, p. 117–126.

[77] N. Nachar, “The mann-whitney u: A test for assessing
whether two independent samples come from the same
distribution,” Tutorials in Quantitative Methods for Psychol-
ogy, vol. 4, no. 1, pp. 13–20, 2008.

[78] V. Nair, A. Raul, S. Khanduja, V. Bahirwani, S. Sellaman-
ickam, S. S. Keerthi, S. Herbert, and S. Dhulipalla, “Learn-
ing a hierarchical monitoring system for detecting and
diagnosing service issues,” in Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, Sydney, NSW, Australia, August 10-13,
2015. ACM, 2015, pp. 2029–2038.

21

[79] S. Nessa, M. Abedin, W. E. Wong, L. Khan, and Y. Qi,
“Software fault localization using n-gram analysis,” in
Wireless Algorithms, Systems, and Applications, Third Inter-
national Conference, WASA 2008, Dallas, TX, USA, October
26-28, 2008. Proceedings, ser. Lecture Notes in Computer
Science, vol. 5258. Springer, 2008, pp. 548–559.

[80] T. H. D. Nguyen, B. Adams, Z. M. Jiang, A. E. Hassan,
M. Nasser, and P. Flora, “Automated verification of load
tests using control charts,” in 2011 18th Asia-Pacific Soft-
ware Engineering Conference, 2011, pp. 282–289.

[81] T. H. D. Nguyen, M. Nagappan, A. E. Hassan, M. Nasser,
and P. Flora, “An industrial case study of automatically
identifying performance regression-causes,” in Proceed-
ings of the 11th Working Conference on Mining Software
Repositories, 2014, p. 232–241.

[82] T. H. Nguyen, B. Adams, Z. M. Jiang, A. E. Hassan,
M. Nasser, and P. Flora, “Automated detection of perfor-
mance regressions using statistical process control tech-
niques,” in Proceedings of the 3rd ACM/SPEC International
Conference on Performance Engineering, 2012, pp. 299–310.

[83] D. G. Reichelt, S. Kühne, and W. Hasselbring, “Peass: A
tool for identifying performance changes at code level,”
in 34th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2019, San Diego, CA, USA,
November 11-15, 2019. IEEE, 2019, pp. 1146–1149.

[84] D. S. Rosenblum, “A practical approach to programming
with assertions,” IEEE transactions on Software Engineer-
ing, vol. 21, no. 1, pp. 19–31, 1995.

[85] C. Runciman and D. Wakeling, “Heap profiling of lazy
functional programs,” J. Funct. Program., vol. 3, no. 2, pp.
217–245, 1993.

[86] W. Shang, A. E. Hassan, M. Nasser, and P. Flora, “Au-
tomated detection of performance regressions using re-
gression models on clustered performance counters,” in
Proceedings of the 6th ACM/SPEC International Conference
on Performance Engineering, 2015, p. 15–26.

[87] W. Shang, M. Nagappan, and A. E. Hassan, “Studying the
relationship between logging characteristics and the code
quality of platform software,” Empir. Softw. Eng., vol. 20,
no. 1, pp. 1–27, 2015.

[88] E. Shihab, A. Mockus, Y. Kamei, B. Adams, and A. E.
Hassan, “High-impact defects: A study of breakage and
surprise defects,” in Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations
of Software Engineering, 2011, p. 300–310.

[89] C. U. Smith and L. G. Williams, Performance solutions:
a practical guide to creating responsive, scalable software.
Addison-Wesley Reading, 2002.

[90] P. Stefan, V. Horký, L. Bulej, and P. Tuma, “Unit testing
performance in java projects: Are we there yet?” in Pro-
ceedings of the 8th ACM/SPEC on International Conference
on Performance Engineering, ICPE 2017, L’Aquila, Italy,
April 22-26, 2017, W. Binder, V. Cortellessa, A. Koziolek,
E. Smirni, and M. Poess, Eds. ACM, 2017, pp. 401–412.

[91] M. D. Syer, Z. M. Jiang, M. Nagappan, A. E. Hassan,
M. N. Nasser, and P. Flora, “Leveraging performance
counters and execution logs to diagnose memory-related
performance issues,” in 2013 IEEE International Confer-
ence on Software Maintenance, Eindhoven, The Netherlands,
September 22-28, 2013. IEEE Computer Society, 2013, pp.
110–119.

[92] H. Thaller, L. Linsbauer, A. Egyed, and S. Fischer, “To-
wards fault localization via probabilistic software mod-
eling,” in IEEE Workshop on Validation, Analysis and Evo-
lution of Software Tests, VST@SANER 2020, London, ON,
Canada, February 18, 2020. IEEE, 2020, pp. 24–27.

[93] J. von Kistowski, S. Eismann, N. Schmitt, A. Bauer,
J. Grohmann, and S. Kounev, “TeaStore: A Micro-Service
Reference Application for Benchmarking, Modeling and
Resource Management Research,” in Proceedings of the

26th IEEE International Symposium on the Modelling, Anal-
ysis, and Simulation of Computer and Telecommunication
Systems, September 2018.

[94] F. Wilcoxon, “Individual comparisons by ranking meth-
ods,” Biometrics Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[95] W. E. Wong, V. Debroy, R. Golden, X. Xu, and B. M. Thu-
raisingham, “Effective software fault localization using
an RBF neural network,” IEEE Trans. Reliab., vol. 61, no. 1,
pp. 149–169, 2012.

[96] W. E. Wong and Y. Qi, “Bp neural network-based effective
fault localization,” Int. J. Softw. Eng. Knowl. Eng., vol. 19,
no. 4, pp. 573–597, 2009.

[97] M. Woodside, G. Franks, and D. C. Petriu, “The future of
software performance engineering,” in Future of Software
Engineering (FOSE’07). IEEE, 2007, pp. 171–187.

[98] F. Wotawa, M. Stumptner, and W. Mayer, “Model-based
debugging or how to diagnose programs automatically,”
in International Conference on Industrial, Engineering and
Other Applications of Applied Intelligent Systems. Springer,
2002, pp. 746–757.

[99] P. Xiong, C. Pu, X. Zhu, and R. Griffith, “Vperfguard:
An automated model-driven framework for application
performance diagnosis in consolidated cloud environ-
ments,” in Proceedings of the 4th ACM/SPEC International
Conference on Performance Engineering, 2013, p. 271–282.

[100] Y. Xu, N. Chen, A. Fernandez, O. Sinno, and A. Bhasin,
“From infrastructure to culture: A/b testing challenges
in large scale social networks,” in Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, 2015, p. 2227–2236.

[101] K. Yao, G. B. de Pádua, W. Shang, C. Sporea, A. Toma, and
S. Sajedi, “Log4perf: suggesting and updating logging
locations for web-based systems’ performance monitor-
ing,” Empirical Software Engineering, vol. 25, no. 1, pp.
488–531, 2020.

[102] S. Yoo, “Evolving human competitive spectra-based fault
localisation techniques,” in International Symposium on
Search Based Software Engineering. Springer, 2012, pp.
244–258.

[103] K. Yu, M. Lin, Q. Gao, H. Zhang, and X. Zhang, “Locating
faults using multiple spectra-specific models,” in Proceed-
ings of the 2011 ACM Symposium on Applied Computing
(SAC), TaiChung, Taiwan, March 21 - 24, 2011. ACM, 2011,
pp. 1404–1410.

[104] Z. Yu, H. Hu, C. Bai, K. Cai, and W. E. Wong, “GUI
software fault localization using n-gram analysis,” in 13th
IEEE International Symposium on High-Assurance Systems
Engineering, HASE 2011, Boca Raton, FL, USA, November
10-12, 2011. IEEE Computer Society, 2011, pp. 325–332.

Lizhi Liao is a Ph.D. student in the Department
of Computer Science and Software Engineer-
ing at Concordia University, Montreal, Canada,
supervised by Weiyi Shang. He has received
his M.Eng. degree from Concordia University
and he obtained B.Eng. from Chongqing Uni-
versity of Posts and Telecommunications. His
research interests contain software performance
engineering, software log mining and mining
software repositories. Contact him at l lizhi@
encs.concordia.ca.

l_lizhi@encs.concordia.ca
l_lizhi@encs.concordia.ca

22

Jinfu Chen is a senior researcher at Centre
for Software Excellence of Huawei Technolo-
gies Canada, Kingston. He has received his
Ph.D from Concordia University, M.Sc. degree
from Chinese Academy of Sciences, and B.Eng.
from Harbin Institute of Technology. His research
interest lies in empirical software engineering,
software performance engineering, performance
testing, code clone detection, software security,
and software log mining. Contact him at https:
//jinfuchen.github.io/jinfu.

Heng Li is an Assistant Professor in the Depart-
ment of Computer Engineering and Software En-
gineering at Polytechnique Montreal, Montreal,
Canada, where he leads the Maintenance, Op-
erations and Observation of Software with intelli-
gencE (MOOSE) lab. He obtained his Ph.D. in
Computing from Queen’s University (Canada),
M.Sc. from Fudan University (China), and B.Eng.
from Sun Yat-sen University (China). He also
worked at Synopsys as a software engineer and
at BlackBerry as a software performance engi-

neer for years. His research interests lie within software engineering,
in particular, software observability and software monitoring, AIOps,
software log mining, software performance engineering, MLOps, and
mining software repositories. Contact him at: heng.li@polymtl.ca; https:
//www.hengli.org.

Yi Zeng is a Master’s student at the Department
of Computer Science and Software Engineering
at Concordia University, Montreal, Canada. He
obtained his B.Sc. from Sun Yat-sen University
in Guangzhou, China. His research interests are
mining software repositories, software log analy-
sis and software performance engineering.

Weiyi Shang is an Associate Professor and
Concordia University Research Chair in Ultra-
large-scale Systems at the Department of Com-
puter Science and Software Engineering at Con-
cordia University, Montreal. He has received his
Ph.D. and M.Sc. degrees from Queens Uni-
versity (Canada) and he obtained B.Eng. from
Harbin Institute of Technology. His research in-
terests include big data software engineering,
software engineering for Ultra-large-scale sys-
tems, software log mining, empirical software

engineering, and software performance engineering. His work has been
published at premier venues such as ICSE, FSE, ASE, ICSME, MSR
and WCRE, as well as in major journals such as TSE, EMSE, JSS,
JSEP and SCP. His work has won premium awards, such as two SIG-
SOFT Distinguished paper award at ICSE 2020 and 2013. His industrial
experience includes helping improve the quality and performance of
ultra-large-scale systems in BlackBerry. Early tools and techniques de-
veloped by him are already integrated into products used by millions of
users worldwide. Contact him at http://users.encs.concordia.ca/shang.

Catalin Sporea is a senior software engineer at
ERA Environmental Management Solutions. He
received a Master of Science degree in Com-
puter Engineering from the Technical University
of Cluj-Napoca, Romania, as well as a certifi-
cate in Information and Security Analysis from
HEC Montreal. His specialization is in security
of online data transactions and database struc-
tures with extensive experience in the banking
industry, with a particular interest in big data
applications to enterprise and industry. Contact

Catalin at steve.sporea@era-ehs.com.

Andrei Toma is an analyst and project manager
with ERA Environmental Solutions, in Montreal,
Canada. He has worked on ERA’s EH&S soft-
ware development for the last 17 years and his
teams successfully completed projects related
to complex data structures and data processing.
His major contributions are in the areas of solu-
tion concept and design, analysis and validation
of proposed solutions, risk analysis, functional
analysis, data analysis / data modeling and busi-
ness process modeling. From time to time he

enjoys taking challenges in SQL performance improvements. You can
reach him at andrei.toma@era-ehs.com.

Sarah Sajedi is a cofounder of ERA Environ-
mental Management Solutions, B.Sc. in chem-
istry from Concordia University, Canada. She is
the recipient of the Canadian Advanced Tech-
nology Alliance Sara Kirke award for innovation
and corporate leadership, and was a national
finalist for the RBC Women Entrepreneurs Sus-
tainability Award for work in developing tools for
manufacturers to become more sustainable as
well as for implementing sustainable practices
into her organization. She has been a certified

ECO Environmental Professional and educator. Sajedi has been leading
a team of scientists and software engineers for over twenty five years,
focusing on big data, automation, and predictive analysis. Contact her
at sarah.sajedi@era-ehs.com.

https://jinfuchen.github.io/jinfu
https://jinfuchen.github.io/jinfu
heng.li@polymtl.ca
https://www.hengli.org
https://www.hengli.org
http://users.encs.concordia.ca/shang
steve.sporea@era-ehs.com
andrei.toma@era-ehs.com
sarah.sajedi@era-ehs.com

	Introduction
	Motivational background from industrial partner
	Related Work
	Performance regression detection and localization
	Software fault localization

	Challenges
	Approach
	Evaluation
	Open-source systems and their workloads
	Injected performance regressions
	Experiment setup
	Evaluation results of open-source systems

	A Success Story from an Industrial Deployment
	Lessons Learned
	Threats to Validity
	Conclusions
	Biographies
	Lizhi Liao
	Jinfu Chen
	Heng Li
	Yi Zeng
	Weiyi Shang
	Catalin Sporea
	Andrei Toma
	Sarah Sajedi

