
Adapting Performance Analytic Techniques in a Real-World
Database-Centric System: An Industrial Experience Report

Lizhi Liao
University of Waterloo, Canada

lizhi.liao@uwaterloo.ca

Heng Li
Polytechnique Montréal, Canada

heng.li@polymtl.ca

Weiyi Shang
University of Waterloo, Canada

wshang@uwaterloo.ca

Catalin Sporea, Andrei Toma, Sarah Sajedi
ERA Environmental, Canada

ABSTRACT
Database-centric architectures have been widely adopted in large-
scale software systems in various domains to deal with the ever-
increasing amount and complexity of data. Prior studies have pro-
posed a wide range of performance analytic techniques aimed at
assisting developers in pinpointing software performance inefficien-
cies and diagnosing performance issues. However, directly applying
these existing techniques to large-scale database-centric systems
can be challenging and may not perform well due to the unique
nature of such systems. In particular, compared to typical database-
based systems like online shopping systems, in database-centric
systems, a majority of the business logic and calculations reside
in the database instead of the application. As the calculations in
the database typically use domain-specific languages such as SQL,
the performance issues of such systems and their diagnosis may
be significantly different from the systems dominated by tradi-
tional programming languages such as Java. In this paper, we share
our experience of adapting performance analytic techniques in a
large-scale database-centric system from our industrial collabora-
tor. Our adapted performance analysis pays special attention to
the database and the interactions between the database and the
application with minimal reliance on expert knowledge and man-
ual effort. Moreover, we document our encountered challenges and
how they are addressed during the development and adoption of
our solution in the industrial setting as well as the corresponding
lessons learned. We also discuss the real-world performance issues
detected by applying our analysis to the target database-centric
system. We anticipate that our solution and the reported experience
can be helpful for practitioners and researchers who would like to
ensure and improve the performance of database-centric systems.

CCS CONCEPTS
• Software and its engineering → Software performance; •
General and reference → Performance.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0327-0/23/12. . . $15.00
https://doi.org/10.1145/3611643.3613893

KEYWORDS
Performance analysis, database-centric system, field testing, per-
formance issue, performance regression, root cause analysis

ACM Reference Format:
Lizhi Liao, Heng Li, Weiyi Shang, and Catalin Sporea, Andrei Toma, Sarah
Sajedi. 2023. Adapting Performance Analytic Techniques in a Real-World
Database-Centric System: An Industrial Experience Report. In Proceedings of
the 31st ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE ’23), December 3–9,
2023, San Francisco, CA, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3611643.3613893

1 INTRODUCTION
Performance is critical to the success of a modern software system
since it directly impacts the system’s speed, responsiveness, and re-
liability, which are crucial to user satisfaction and productivity [9].
Unsatisfactory performance of the system may potentially lead to
significant adverse consequences to the stakeholders of the system,
e.g., additional operation costs, damaged customer relations, or loss
of profit [47, 50, 54]. This is also the case for our industrial collabo-
rator. In particular, the system from our industrial collaborator is
an enterprise application (EA) that provides important government
regulation-related reporting services to clients across the globe,
and due to the importance of the services, the system performance
is considered a vital matter. EA is described in detail in Section 2.

Due to the practical advantages in the ease of development, scal-
ability, maintainability, and reliability [26], our target industrial
system (i.e., EA) adopts a database-centric architecture based on two
tiers (i.e., application and database) to cope with the continuously
increasing variety, quantity, and complexity of user data. Unlike typ-
ical database-based systems, like online shopping systems, where
only simple CRUD (create, read, update, and delete) operations are
applied to the database, EA extensively extends the database with
pre-defined stored procedures to perform in-database operations
to process business logic and calculations. By placing the database
at the central position, the application written in regular source
code (e.g., C#) is designed around the database and only serves as a
connector between user requests and complex business logic and
calculations in database stored procedures.

In recent years, many studies have proposed analytics-driven
approaches to assisting in analyzing software system performance,
such asmonitoring andmanaging tremendous performance data [16,
22, 38, 51], identifying software performance issues [18, 31, 32, 35,
46, 55], and locating the root causes of performance issues [6, 12,

https://doi.org/10.1145/3611643.3613893
https://doi.org/10.1145/3611643.3613893
https://doi.org/10.1145/3611643.3613893

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Lizhi Liao et al.

23, 29, 41]. Inspired by prior studies, we have deployed traditional
performance monitoring and analytics in EA to assist developers
in ensuring the system performance. However, since the existing
analytic techniques are not originally designed for database-centric
systems, we face major challenges in the target industrial context. In
particular, the results of traditional performance analytics consider
only the application part of the system, while in our target system,
the application source code is simply responsible for connecting
user requests to the complex business logic and calculations resid-
ing in the database. Focusing solely on the application and ignoring
the crucial impact of the database and the interactions between the
database and the application often lead to failures in identifying
real performance issues and their underlying root causes.

In this paper, we present our industrial experience of adapting
performance analytic techniques in the large-scale database-centric
system (i.e., EA) from our industrial collaborator. During the de-
velopment and adoption of our solution, we encountered many
engineering challenges. In particular, we first need to expose the
runtime measurement of the database for performance analytics.
We then need to expose the source code from the database for per-
formance root cause analysis. For these challenges, we document
our solution to address them and what we have learned during
the process. We also share the implemented analysis in the target
industrial setting and discuss the real-world cases detected by our
analysis. We believe that our experience and learned lessons can
provide software practitioners and researchers with helpful insights
into ensuring and improving the performance of database-centric
systems.

The main contributions of this study include:
• We provide an industrial experience report that discusses the
encountered challenges, proposed solutions, and the learned
lessons when adapting performance analytic techniques in
a real-world database-centric system.

• We present the implemented analysis that can effectively
assist developers in ensuring and improving the database-
centric system performance from multiple aspects, including
identifying performance anomalies within one release, de-
tecting performance regressions between two releases, and
locating the corresponding root causes.

• Our engineering process and experience can be helpful for
software practitioners and researchers who are interested in
ensuring and improving the performance of database-centric
software systems.

Paper organization. Section 2 introduces our target system
and explains the motivational background. Section 3 discusses the
encountered challenges, our proposed solutions, and the learned
lessons. Section 4 describes our implementation of the adapted
performance analytic techniques. Section 5 discusses the detected
real-world performance issues and improvements. Section 6 surveys
prior research related to this paper. Section 7 discusses the threats
to the validity of our study. Finally, Section 8 concludes the paper.

2 BACKGROUND
In this section, we briefly discuss the industrial system that we study
and the backstory for adapting performance analytic techniques
for the target system.

The industrial system under study. The industrial system (i.e.,
EA) studied in this work is a large-scale database-centric enterprise
application from our industrial collaborator. EA is a commercial
software system that provides reporting services related to govern-
ment regulations (e.g., environmental regulations) to enterprises
across the globe and it is also the market leader in its field. Due
to the non-disclosure agreement (NDA), we cannot give the exact
details about the system. EA has more than 20 years of history and
is currently under active development for new features and mainte-
nance activities. EA has more than two million lines of code based
on the Microsoft .Net framework and adopts a database-centric
architecture. The database plays a more vital role in the system
and is extensively used by other software components (e.g., the
web application) designed around it. EA utilizes the Microsoft SQL
server as the database server to store all the user data and exten-
sively extends the database with pre-defined stored procedures to
perform in-database operations to process the business logic and
calculations. The database is large in scale and high in complexity,
consisting of more than 1,000 stored procedures and 5,000 tables.

The current practice in EA and its limitations. Due to the
large client base and the importance of the service, the performance
of the EA is a primary concern of our industrial collaborator. Like
many other industrial systems, EA follows fast-paced agile software
development and release practices. Therefore, instead of conducting
resource- and time-consuming in-house performance testing before
each new release, the existing performance assurance activities are
conducted based on the system runtime data (e.g., web access logs
or CPU usage) that is directly collected under real-world client
operations in a canary releasing [1] manner. In particular, the new
version of the system runs simultaneously with the old version,
while the new version only serves a small portion of clients. After
making sure there are no performance issues in the new version, it
is then expanded to reach more clients until its full release.

The existing practice of performance analysis consists of the fol-
lowing two main parts. First, we put all the collected system perfor-
mance metrics (e.g., CPU or memory usage) under the management
of the ELK stack for data storing, processing, and visualization.
Through the visualizations of the collected performance metrics,
developers can have an overall comprehension of the system per-
formance and then utilize the expertise of the system to further
diagnose the performance issues. Furthermore, we also extract the
response time for each type of web request from web application ex-
ecution logs and adopt a pair-wise analysis to compare the response
time of each web request type across versions of the system. We
utilize statistical hypothesis testing (i.e., Wilcoxon rank-sum test
(WRS) [53]) for the comparison and the null hypothesis assumes
that the response times of a web request type are similar between
the two versions while the alternate hypothesis is that there is
a statistical difference (can be regression or improvement). The
null hypothesis is rejected when p-values are smaller than 0.05. If
there are web requests detected slow in the new release, we further
adopt static code analysis techniques to identify the associated code
changes in the commit history. Such slow web requests and code
changes are provided to senior developers for further investigation.

However, there exist major limitations in the current practice of
performance analysis. One limitation is that our existing practices
focus solely on the application and do not have enough information

Adapting Performance Analytic Techniques in a Real-World Database-Centric System ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

on the crucial impact of the database (e.g., database performance or
runtime behaviors) and the interactions between the database and
the application (e.g., how application code relates to database oper-
ations). Such a limitation often leads to failures in identifying the
performance issues and their underlying root causes. Additionally,
in our experience, we have observed that the pair-wise analysis
often reports a large number of web requests as performance is-
sues even though only a few or none of them were confirmed by
senior developers (i.e., false positives), which leads to developers
wasting a significant amount of time and effort in examining the
results. Furthermore, unlike in-house performance testing where
the workload is often fixed or constant, the real workload in the
production environment is constantly changing, which makes it
challenging for developers to determine whether the performance
impact is caused by performance issues or workload variations
solely by visualizing the collected performance metrics.

Current practices of addressing these challenges largely rely on
developers’ manual analysis in an ad-hoc manner, however, due to
the increasing complexity and scale of the system, such a manual
process can be extremely difficult and tedious, and even senior
developers with expert knowledge may still need to spend a signifi-
cant amount of manual effort and extensive time to diagnose the
performance issues and fix them. Worse, the delay in the detection
and fixing of performance issues may potentially cause a signifi-
cant adverse impact in terms of both the reputational and financial
aspects of the company.

Our proposed solution. In order to overcome these limitations,
we propose to adapt performance analytic techniques in the context
of the target database-centric system (i.e., EA). In particular, our
adapted solution pays special consideration to the performance of
the database and the interactions between the database and the
application. Further, we aim to provide multi-aspect analysis, in-
cluding detecting performance anomalies within one release, iden-
tifying performance regressions between two releases, and locating
the root causes. Our approach has been adopted in the internal plat-
form of the industrial collaborator to assist developers in ensuring
and improving the system performance on a daily basis.

3 CHALLENGES AND LESSONS LEARNED
In this section, we discuss the challenges encountered during the
process of adapting performance analytic techniques to our target
real-world system (i.e., EA) that is database-centric and large in
scale. For each challenge, we describe the corresponding solutions
and the lessons that we learned from addressing the challenge.

Figure 1 outlines our engineering process. Overall, we first ex-
pose the runtime measurement of the database for performance
analytics, then we expose the source code from the database for
performance root-cause analysis. The details of our implemented
analysis are described in Section 4 and the detected real-world
performance issues are discussed in Section 5.

3.1 C1: Exposing the runtime measurement of
the database for performance analytics

Challenge. Analyzing system performance is a critical task for a
large-scale software system since it helps to guarantee and improve
the system performance. In order to adapt the existing performance

Target database-centric system

Problematic
database or

application activities

Collected
performance data
and execution logs

Collected
performance data
and execution logs

Root cause analysis (RCA)

Performance issue
root causes

Application and
database code version

management

C1: Exposing the runtime
measurement of the database

for performance analytics

Database

Application
User interaction

Business logic and
calculations

Stored procedures

C2: Exposing the source code
from the database for

performance root-cause analysis

Performance anomaly
(PAA) and regression

analysis (PRA)

Figure 1: An overall engineering process of adapting perfor-
mance analytic techniques in EA

analytic techniques in EA, we first need to understand how the
system behaves under real-world workloads, especially when the
system misbehaves or exceeds our expectations. However, unlike
traditional applications, whose system performance or runtime
behaviors are well captured by many available techniques, for ex-
ample, application performance monitoring (APM) tools monitor
and manage the performance of the application, and web servers
(e.g., Apache Tomcat [4]) typically generate web access logs by
default in order to support performance analysis, the performance
and runtime behaviors of the database are often unexposed or not
well understood. In database-centric systems without such essential
information, when severe performance issues arise, what develop-
ers can only do is make decisions based on uninformed guesses or
personal experiences. On the other hand, database-centric systems
tend to have frequent database access operations that need to be
captured. We could not add too much monitoring overhead to the
system since the performance of the database is critical. Therefore,
our first challenge is to comprehensively understand how the data-
base in EA behaves under dynamic field workloads for performance
analytics, without introducing significant monitoring overhead to
the system.
Solution. To address the challenge, we propose to leverage two
types of monitoring solutions to gain insight into how the data-
base in EA performs under the dynamic field workloads and its
corresponding runtime behavior from different perspectives and
granularities. Resource utilization (e.g., CPU or memory usage) is
an important aspect to consider when understanding the perfor-
mance of a system, especially when some resources are overused or
their utilization becomes unreasonable. Therefore, we first add the
recording of system-level performance metrics for all the database
servers (based on Windows platforms) by utilizing TypePerf [5].
TypePerf is a lightweight tool in Microsoft Windows operating
systems used for performance monitoring. It provides a wide range
of performance counters to collect the system performance, such
as CPU usage, memory utilization, and disk activity, and it can
output the data in various formats, like CSV or binary log files.
These collected performance counters provide us with the window
to observe how busy various resources of the system are when
running under a specific workload.

Furthermore, to support a more comprehensive performance
analysis of EA, we also leverage sp_WhoIsActive [2] to record a
more fine-grained (i.e., at the query level) performance and runtime
behavior of the database. sp_WhoIsActive is a powerful and light-
weight stored procedure that can help gain important insights into

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Lizhi Liao et al.

the internal workings of the SQL Server database. sp_WhoIsActive
provides real-time information about running processes, such as
query text, execution time, I/O activity, session information, and
the outer batch or stored procedure information. By combining the
abundant information from these sources, developers can obtain
a clear and comprehensive understanding of the database perfor-
mance in EA. This provides developers with a solid foundation
to analyze which component may be malfunctioning and the cor-
responding contextual data, such as what else is running on the
system, which helps identify and troubleshoot performance issues.

To avoid significant performance overhead to the system while
keeping an adequate amount of the system runtime information,
we have attempted to performance test the system with various
data collecting intervals (e.g., 10 to 60 seconds) under different
workloads. Through working closely with the senior developers,
we determined that recording system-level performance metrics
every 30 seconds and query-level database runtime behaviors every
15 seconds achieves an acceptable balance between the accuracy
and the overhead of the measurement. It is worth noting that we
also put these massive and valuable data that record system perfor-
mance and runtime behaviors in our ELK Stack-based performance
data platform (cf. Section 2) for the unified management and pre-
liminary visualizations. Our solution enables further performance
anomaly analysis (PAA) and performance regression analysis (PRA)
described in Section 4.
Lessons learned. Leveraging monitoring techniques to un-
derstand how the database in the database-centric system
behaves under dynamic field workloads with minimal per-
formance overhead. Due to the high complexity and large scale
of modern software systems, if there is a lack of adequate infor-
mation about the system performance and runtime behavior, it
can be extremely challenging to analyze and diagnose the system
performance when the system misbehaves. This is even harder
for large-scale database-centric systems since the database plays a
vital role in the performance of such systems, and the performance
and runtime behaviors of the database are usually unexposed or
not well understood. Therefore, it is crucial to have a comprehen-
sive monitoring solution from various perspectives to record the
database performance and runtime behavior to gain more insights
into how a database-centric system behaves under dynamic field
workloads.

On the other hand, collecting more system runtime information
(e.g., in a high recording frequency) often means more usable data
and a more accurate representation of the system performance.
However, it also brings more performance overhead, which is a ma-
jor concern of developers, especially in the production environment.
Therefore, it is critical to work closely with senior developers to run
various experimental trials with different recording frequencies at
various workloads to understand the introduced performance im-
pact. While maintaining enough data and accuracy for the analysis,
it is important to minimize additional performance costs to increase
developers’ confidence in adopting our solution in practice.

Providing centralized management and visualization sup-
port to developers. Based on our experience, we observe that
large-scale database-centric systems tend to have a large number
of performance metrics and runtime behavior logs since the sys-
tem often involves frequent database access operations that need

to be monitored and recorded. Such data are valuable and con-
tain rich information about the system’s workload and running
status for further performance analysis of the system. Therefore,
putting these runtime monitoring data under the management of
centralized processing and storage mechanisms (e.g., in the ELK
stack-based platform) is important. In addition, putting these sys-
tem runtime data into visualization also helps developers obtain a
preliminary grasp and analysis of the performance of the large-scale
database-centric system in a more intuitive manner.�

�

�

�

We monitor both the system-level performance and query-
level runtime behavior to comprehensively understand how
the database in a database-centric system performs under dy-
namic field workloads. Minimizing monitoring overhead and
providing centralized management and visualization of the
collected data is helpful to increase developers’ confidence
in adopting our solution.

3.2 C2: Exposing the source code from the
database for performance root-cause
analysis

Challenge. In EA, the database is highly complex and large in
scale, comprising over 5,000 tables and 1,000 stored procedures,
with an average of over 300 lines of code (LOC) per stored pro-
cedure. Unlike application source code that is well managed by
various modern version control systems, the code changes in the
database are often treated as second-class citizens and are left out
of the development process. This is because database code may
be strongly integrated with the database (e.g., SQL code in stored
procedures), which makes it more challenging and requires more
specialized knowledge and skill sets to manage the changes. On the
other hand, in a database-centric system, the application and the
database are often tightly connected, for example, the SQL queries
are often highly dynamically constructed through a series of string
operations (e.g., concatenation and substitution) in the application
code and the application code usually invokes stored procedures to
perform in-database operations to process the business logic and
calculations. Since the database plays a critical part in the perfor-
mance of a large-scale database-centric system, if there is no proper
management of database code changes and the link between the
application code and the database code, when severe performance
issues arise in the system, it becomes even more challenging to
diagnose their root causes.
Solution. Exposing database code histories. In order to expose
database code histories, we implemented a lightweight solution to
automate the process of managing the database changes in version
control. In particular, we first export a version of the database
schema, including table structures, views, functions, triggers, and
stored procedures as text files. After that, we link these files to a
version control system (e.g., Git or TFVC). Whenever there are new
database schema changes made in the new version of the system,
it will trigger our automated tool to export the database schema
again and developers can commit it to version control. By following
such a process, it becomes straightforward for developers to track
what the change to the database was and visualize the difference
over time. More importantly, it also makes it possible to revert to

Adapting Performance Analytic Techniques in a Real-World Database-Centric System ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

previous versions of the schema if needed and trace back to the
source changes in the database when analyzing and diagnosing the
performance issues in the system.

Linking database activity to application code. We devel-
oped an automated solution that helps developers link database
activities to concrete application code. Our solution first extracts
the accessed database tables in the application code that generates
database queries and the accessed database tables in the database
query. By matching the accessed database tables from the applica-
tion code and database query, we can establish a coarse-grained
mapping between the database activity and the application code.
Based on this mapping, we then leverage static code and string
analysis techniques to further capture a more fine-grained relation-
ship between database activity and application code. In particular,
starting from the locations in the application code that execute a
database query, we extract a list of possible query strings by an-
alyzing intra-procedural and inter-procedural control flow with
the help of the abstract syntax tree (AST). We then calculate their
similarities to the database query to link the database activity to
the application code. We find that by conducting the analysis, the
required time and effort for developers to link database activities
to the application code can be significantly reduced.

Linking application activity to database code. In an effort
to link application activity to database code, we first utilize static
code analysis techniques to inspect the entire application source
code and construct a call graph for the target application activities
(e.g., web requests). Through traversing the methods in this call
graph, we search for locations where the SqlCommand object is
created with CommandType.StoredProcedure as its command type.
We then extract the name of the stored procedure being executed
in the method, which is passed as the command text parameter. By
doing so, we can successfully link the application activity to a list
of database stored procedures that the activity may invoke.

Our solution of managing database code changes and building
the link between the application code and the database code enables
further root cause analysis (RCA) presented in Section 4 when we
identify any performance issues in the system.
Lessons learned. Managing the changes of the database is
critical for the performance analysis of the database-centric
system. Database version control brings many benefits in terms
of improving management efficiency and performance in database-
centric systems. In particular, by checking the database version
control, it is convenient for developers to understand what changes
have happened to the database, what has been done currently, and
who is doing the changes. Having the database code changes under
version control also help developers and database administrator to
synchronize application and database better, which makes it easy to
map the application changes to the database changes. Furthermore,
in the event that any performance issues related to the database are
identified, developers can promptly reference the database source
changes and efficiently resolve them.

In large-scale database-centric systems, the performance
issues are often due to the activities in the database rather
than in the application. Analyzing and diagnosing the perfor-
mance issues in database-centric systems are quite different from
that in other systems. All too often, the developer cannot locate
the root cause of performance issues in the application code, since

most of the business logic and calculations are processed by stored
procedures that run in the database, rather than relying on the logic
running in the application. With the help of static code analysis
techniques, we can locate not only the application code but also the
database code that is related to the problematic application activity,
which effectively helps developers diagnose the real root cause of
performance issues.

Leveraging static code and string analysis can help link
the application code and dynamically generated SQL queries.
Database activities, such as SQL queries, are often constructed
by application code in a highly dynamic manner. Even the same
code may generate significantly different SQL query commands de-
pending on the corresponding parameter or conditions, which has
remarkably increased the difficulty for developers to link a query to
the corresponding application code. Through the utilization of the
accessed table analysis combined with the static code and string
analysis, we are able to assist developers in locating the application
code that is associated with a problematic database activity.�

�

�

�

Exposing database code history simplifies tracking database
code modifications and enables tracing performance issues
back to database code changes. By leveraging static code and
string analysis, the database code and application code can be
effectively linked to each other while requiring less expertise
and effort from developers for performance analysis.

4 IMPLEMENTED ANALYSIS
In this section, we present the detailed implementation of our
adapted performance analytic techniques in the context of the
target large-scale database-centric system (i.e., EA). In total, our
implemented performance analysis consists of three main parts: 1)
performance anomaly analysis within one release, 2) performance
regression analysis between two releases, and 3) root cause analysis.
Part 1) and Part 2) of the analysis are supported by our solution to
challenge C1 described in the previous section, while the analysis
in Part 3) is enabled by our solution to challenge C2.

4.1 Performance anomaly analysis within one
release (PAA)

In the first type of implemented analysis, our objective is to auto-
matically identify the existence of performance issues that arise
during a particular release. We identify the problematic application
activity (i.e., web request) and database activity (i.e., query or stored
procedure) through outlier analysis (PAA-1), and for the problem-
atic database stored procedures, we also locate the corresponding
performance bottleneck through proportion analysis (PAA-2).

PAA-1: Performance outlier analysis. Performance outliers
refer to the performance data that deviates significantly from the
expected or normal behavior of the system such as an extremely
slow response of a SQL query or web request. It is a common yet im-
portant performance issue in large-scale database-centric systems
dealing with massive amounts of data. To identify performance
outliers, we first parse the recorded database and application run-
time activity logs to extract the execution duration of each database
activity (e.g., SQL query or stored procedures) and each application
activity (e.g., web request) within the current version of the system.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Lizhi Liao et al.

Then, we utilize two statistical techniques that have been commonly
utilized in prior work [7, 45, 52], namely Z-sore and inter-quartile
range (IQR), to effectively detect performance outliers in EA. In
particular, the Z-score measures how far an observation deviates
from the mean in the unit of standard deviation. If the Z-score
of an observation is larger than three, it is an indicator that this
observation is quite different from other ones and can be classified
as an outlier [7]. By contrast, IQR is a measure of the dispersion of
data, calculated by the difference between the third quartile and the
first quartile. Typically, observations that fall below the value of
the first quartile minus 1.5 times the IQR or exceed the value of the
third quartile plus 1.5 times the IQR are identified as performance
outliers. In the event of any performance outliers detected by both
techniques, we leverage ElastAlert to provide a timely alert to the
developers with emails. When an outlier is only detected by one
technique, we do not produce an alert to avoid false alarms. Fur-
thermore, we store and visualize the extracted execution duration
and analysis results in our ELK stack, enabling developers to utilize
our analysis in a more transparent and intuitive manner. Without
this analysis, developers will not know in certain cases, a database
query can take significantly longer than usual.

PAA-2: Performance proportion analysis. Database activi-
ties typically do not occur in isolation, but rather in the form of
a sequence, for example, in the execution of database stored pro-
cedures, there may be a series of queries that are executed in a
specific order. Identifying performance bottlenecks in the sequence
of these activities is critical to help developers pinpoint the real
cause of the identified performance issues. To this end, after we
have identified the problematic database stored procedures from
PAA-1, we further analyze the recorded database execution logs
and recover the activities sequence by linking the related log lines
into sequences. For instance, we group the log lines that have the
same session ID and user ID as the problematic stored procedures,
and these log lines can be used to represent the activity sequence of
execution of the stored procedure. After that, we calculate the pro-
portion of execution time of each individual activity (i.e., a query)
compared to the performance of the entire sequence of activities
(i.e., the stored procedure). Our intuition is that if a database stored
procedures have performance issues, the activity that takes up the
majority portion (e.g., more than two-thirds) of the execution time
of that entire activity sequence is more likely to be the real cause of
the problem. Without this analysis, developers would not identify
the time-costly database query. We further prioritize the potentially
problematic activities based on their contribution to overall per-
formance issues. This allows developers to allocate their time and
effort more effectively when conducting further investigations.

4.2 Performance regression analysis between
two releases (PRA)

Different from the first type of analysis, in this subsection, we em-
ploy two complementary approaches, including statistical process
control chart-based analysis and machine learning model-based
analysis to point out any performance regressions introduced in
the development of a new release compared to the previous release.

PRA-1: Statistical process control-based performance re-
gression analysis. In an effort to identify the problematic system

activities that may cause the performance regression, we leverage a
statistical process control technique called control charts (similar to
prior research [35, 36]) to analyze the execution time of every type
of system activity (including application activities and database
activities) across the old and the new releases of the system. In
particular, we extract the execution time for each system activity
from the database and web application execution logs collected dur-
ing the execution of both the old and new releases. The extracted
performance from the old release serves as a baseline and is utilized
to create control limits, including the center line (CL), upper control
limit (UCL), and lower control limit (LCL). The LCL, CL, and UCL
are commonly defined as the 10𝑡ℎ , 50𝑡ℎ , and 90𝑡ℎ percentiles of the
old release performance, respectively [35]. We create a separate
control chart for each type of activity and once the control limits
are established, we then compute the percentage of performance
extracted from the new release that falls outside these limits, which
is known as the violation ratio. This metric represents the likelihood
of performance regression for a particular system activity type in
the new release. If the violation ratio of an activity type surpasses a
threshold set by experts (e.g., 20%) and its average execution time in
the new version is higher than in the old version, then that system
activity type is identified as a performance regression. Before our
adaption, our analysis did not know the performance regressions
occurring in the database activity.

PRA-2: Machine learning model-based performance re-
gression analysis. To alleviate the impact of continuously varying
workloads in the production environment, in this analysis, we rely
on a machine learning model-based approach from prior work [27]
to identify problematic system activities. In particular, when the
system has a new release, we construct two random forest models
to capture the relationship between the performance of the system
and the runtime activities (i.e., system workload) by using the data
from the old and new releases, respectively. We then apply these
models to the new release data to evaluate their respective modeling
errors. Afterward, we compare these two models by evaluating the
deviation of their modeling errors through statistical analysis (i.e.,
performing statistical tests and measuring effect sizes). The idea
behind this is that if a system runtime activity contributes to the
deviation of the performance models built on two different software
releases, then the system activity has a high chance of being the
cause of performance regressions between the two releases. Finally,
we utilize a linear regression model [19] to explain the relation-
ship between the system activities and the deviation in modeling
errors. If a system activity contributes significantly (with a p-value
smaller than 0.05) to the deviation, then it is considered problematic.
Prior to our adaption, our analysis was unaware of performance
regressions related to the problematic database activity.

4.3 Root cause analysis (RCA)
Once performance issues have been identified through the above-
mentioned analysis, we intend to locate their root causes from
two perspectives, including problematic application activity and
problematic database activity.

RCA-1: Root cause identification from problematic appli-
cation activity. To locate the root causes (i.e., source code or code
changes) of the identified problematic application activity (i.e., web

Adapting Performance Analytic Techniques in a Real-World Database-Centric System ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

request), we first search through the entire application source code
by keywords, function names, or URLs to find out one or more
methods associated with the target application activity. Then, we
utilize the static code analysis framework (i.e., .NET Compiler Plat-
form SDK, also known as Roslyn) to parse the source code and
construct a call graph for the method(s) associated with the web
request. Moreover, for the methods in the call graph that invoke
database stored procedures, we further extract the name of the
stored procedures being executed. To achieve this, we traverse all
the invoked stored procedures using static analysis and save their
names in a list. Afterward, we enhance the previously constructed
call graph by annotating the extracted stored procedure names
onto the methods that invoke them. The source code, including
both application code and database code (i.e., stored procedures),
in these call graphs is identified as the potential root cause of the
problematic application activity. In particular, when performance
issues are detected between two releases of the system, we conduct
a more in-depth investigation by analyzing the system version his-
tory. Specifically, we look for any changes between the two releases
made to the application or database code that may have affected
the methods or stored procedures presented in the enhanced call
graph. We then consider these code changes, along with additional
information such as code churn and committer data, as potential
causes of the performance issues. Finally, we provide this informa-
tion to the developers responsible for the affected code for further
investigation and resolution.

RCA-2: Root cause identification from problematic data-
base activity. The identified problematic database activities can
be generally divided into two categories: problematic queries and
problematic stored procedures. In cases where problematic stored
procedures are identified from our performance anomaly analysis
(PAA) or performance regression analysis (PRA), we can directly
examine the corresponding database code and its version history,
and consider this code or any associated code changes as the root
cause of the issue (i.e., similar to RCA-1). However, for problematic
queries, pinpointing the corresponding root cause becomes more
challenging since these queries are often dynamically constructed
through a series of string operations in the application code such
as concatenation and substitution. Due to the complexity of the
system, the same source code may generate remarkably different
queries based on the different parameters or code paths. From a
straightforward example shown in Listing 1, this application code
constructs queries dynamically based on the user input, and the
query may vary for different inputs.

1 public static string GenerateQuery(string userInput)

2 {

3 string sqlQuery = "SELECT * FROM Products";

4 if (! string.IsNullOrEmpty(userInput))

5 {

6 sqlQuery += " WHERE ProductName LIKE '%" +

userInput + "%'";

7 }

8 return sqlQuery;

9 }

Listing 1: Exmaple of dynamically constructing a SQL query

To tackle this challenge, we first perform a coarse-grained match-
ing between the identified problematic database activities and the

application code, based on the accessed database table. Firstly, we
parse the application code to identify all the methods that involve
database operations. Then, for each of these methods, we extract
the database tables accessed by it (e.g., using regular expressions to
extract the "FROM" clause). We also extract the accessed database
tables of the SQL query under investigation. By matching these
results, we can generate a list of methods in the application code
that are potentially responsible for generating the target SQL query.

Once we have narrowed down the scope, we conduct a more
fine-grained static code and string analysis (similar to prior re-
search [33]) to further locate the root causes of the problematic
database activities. In particular, for each of the candidate methods
in the application code, we extract the abstract syntax tree (AST)
from the corresponding source code and leverage the visitor pattern
provided by the .NET compiler platform SDK (Roslyn) to identify
the locations where SQL queries are sent to the database (e.g., state-
ment.executeQuery(query)). Then we take each of these locations
as the starting point and extract all the potential SQL string values
passed to it. To achieve this, we extract the control flow that leads
to the starting point with the help of Roslyn. Afterward, we trace
back all the related expressions of the SQL query following the
control flow previously extracted and try to determine the values
of the query expression by resolving each variable involved in it.
However, sometimes constructing a SQL query may involve vari-
ables passed as parameters, for example, "select" + column + "from
table1", where column is passed to the method as a parameter. In
order to determine the different possible values of the required pa-
rameters, we recursively resolve the query expression by following
the call graph of the application in a backward direction. At the
end of our analysis, a set of different possible SQL string values
that can be produced at a specific location in the source code is
generated. After that, we compare these SQL strings to the one
that was identified as problematic. We leverage the Gestalt pattern
matching algorithm [40] to calculate the similarities between the
two SQL query strings and provide the ones with relatively high
similarity (e.g., the top 5) as well as the corresponding locations
(e.g., the names of the application methods) that could potentially
generate these queries to developers for further investigation. In
particular, if performance issues are detected between two releases
of the system, we automatically scan the system version history to
identify any changes made to these candidate methods and provide
them to developers (i.e., similar to RCA-1).

5 DETECTED REAL-WORLD CASES
Our solutions and analysis have been adopted and used by the
industrial collaborator to ensure the performance of EA on a daily
basis. Since the performance analysis is based on the data collected
in the production environment, the workload for EA is not predeter-
mined (cf. Section 2). Table 1 summarizes a set of real-world issues
that were detected by applying our adapted analysis in the target
industrial setting. In particular, we have detected and confirmed a
total of six cases, including five performance issues and one per-
formance improvement that occurred either within one release
or across two releases, and we also identified the corresponding
root causes. In the following, we present more details about each
detected case.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Lizhi Liao et al.

Table 1: The summary of real-world cases detected in the target industrial setting (i.e., EA)

ID Type Scope Involved analysis Description Visualization of detection results

DI-1 Issue BTR PRA-1, RCA-1
This is a performance regression caused
by newly added complex SQL queries in

database stored procedures.

DI-2 Issue WOR PAA-1, RCA-2 This is a performance anomaly due to an
inefficient SQL query for a new feature.

DI-3 Issue WOR PAA-1, PAA-2,
RCA-2

This is a performance anomaly caused by
a problematic SQL stored procedure

related to business logic.

Activity sequence: A1 → A2→ A3 → A4 → A5 → A6

Execution time (ms) Proportion (%) Activity details

2113.56 39 A6: detail info. of A6 (Confirmed)
1706.54 31 A5: detail info. of A5
1302.84 23 A3: detail info. of A3
161.95 3 A4: detail info. of A4
146.52 3 A1: detail info. of A1
39.67 1 A2: detail info. of A2

DI-4 Issue BTR PRA-1, PRA-2,
RCA-1

This is a performance regression caused
by an inefficient SQL stored procedure
when handling a large amount of data.

DI-5 Issue BTR PRA-2, PAA-1,
RCA-1

This is a performance regression caused
by an inefficient SQL query generated by

the application code.

DI-6 Improvement BTR PRA-2, RCA-1
This is a performance improvement due
to the optimization of a SQL query in the

new version.

Note: In the “Scope” column, “WOR” stands for within one release and “BTR” stands for between two releases.

5.1 Detected Issue 1 (DI-1)
The first detected case (i.e., DI-1) is a performance regression be-
tween two consecutive releases of EA and it is caused by newly
added complex SQL queries in the database stored procedures. In
particular, the issue was detected by the control charts that track
the response times of each web request type and examine the vi-
olation ratio of the same type of web request for a new release
(i.e., PRA-1). From the results, we observed that there is one type
of web request in the new release showing a significantly slower
response time than that in the previous release with a violation
ratio of 31.43% (the violation threshold is set at 20% by senior devel-
opers). The constructed control chart for the target web request is
also shown in Table 1. Prior to exposing the source code from the
database (as discussed in Section 3.2), we find that there seem to
be no application code changes that are related to the performance
regressions. After successfully addressing the challenge and per-
forming the root cause analysis for problematic application activity
(i.e., RCA-1), we managed to identify two suspicious updates of
database stored procedures in the new release and then confirmed
them with the developers from our collaborator. These updates
introduced multiple complex SQL queries to support new require-
ments, resulting in the target web request that frequently invokes
these stored procedures taking longer to respond to clients.

5.2 Detected Issue 2 (DI-2)
DI-2 is an identified performance anomaly due to an inefficient
SQL query for a new feature. This issue was missed by our prior
pair-wise analysis (cf. Section 2) and it caused a direct impact on
end users. After investigation, we found that this issue is caused
by a new feature (i.e., a new type of web request) released in the
current version, however, our prior performance analytics focused
only on the performance regressions of the same system feature
during consecutive versions, which has limited support for this case.
By utilizing our adapted analysis on the recorded database execu-
tion logs (i.e., PAA-1), we have successfully identified performance
outliers caused by an inefficient SQL query. The detection results
are also shown in Table 1. In particular, our root cause analysis (i.e.,
RCA-2) identified a specific section of the application source code
that generates a complex query. Within this query, the subqueries
implicitly create multiple temporary tables in the database. How-
ever, it was observed that these tables lack indexes, resulting in
poor performance for both the query and the new web request that
triggers this query. This adverse performance impact becomes more
prominent when users interact with larger-than-usual amounts of
data. After discussing the analysis results with developers, they
confirmed the identified root cause and implemented optimizations
to address the inefficiency. After applying the fix, we observed a

Adapting Performance Analytic Techniques in a Real-World Database-Centric System ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

significant improvement in performance, with the execution time
of the SQL query being approximately 10 times faster.

5.3 Detected Issue 3 (DI-3)
DI-3 is a performance anomaly caused by a problematic stored pro-
cedure related to business logic. Similar to the previous performance
issue (i.e., DI-2), this case went undetected in the prior analysis,
and the clients reported experiencing a noticeable slowdown when
performing a specific operation. Our performance outlier analy-
sis (i.e., PAA-1) has successfully identified that the issue stemmed
from a problematic stored procedure associated with business logic.
However, due to confidentiality concerns, we are unable to provide
further details regarding its specifics. Our further performance pro-
portion analysis (i.e., PAA-2) extracted the sequence of database
queries related to the target stored procedure from execution logs
and from the results (also shown in Table 1), we identified a par-
ticular query that consumed a significant portion of the overall
processing time, approximately 39%. After presenting the corre-
sponding root cause through our root cause analysis (i.e., RCA-2)
to developers, they delightedly accepted our findings and promptly
addressed the issue in the subsequent release.

5.4 Detected Issue 4 (DI-4)
DI-4 is a performance regression caused by an inefficient stored
procedure when handling a larger amount of data than before. Our
machine learningmodel-based performance regression analysis (i.e.,
PRA-2) has located a problematic web request. With the support
of our solution of exposing the source code from the database,
we successfully located the corresponding root cause through our
root cause analysis (i.e., RCA-1). However, we also noticed that
the target web request potentially calls a wide range of stored
procedures (>10), making the manual inspection of these results
time-consuming and requiring significant expertise. By combing
the results from our statistical process control-based analysis (i.e.,
PRA-1) on the recorded database execution logs, we identified a
stored procedure responsible for the performance regression. As
shown in Table 1, the stored procedure in the new release shows a
remarkably longer execution time than that in the previous release
with a violation ratio as high as around 40%. Furthermore, we
also found that this issue remained unnoticed in previous releases
primarily due to the fact that clients are currently handling a larger
volume of data than before.

5.5 Detected Issue 5 (DI-5)
DI-5 is a performance regression between two consecutive releases
caused by a newly added inefficient SQL query in the application
code. Our machine learning model-based performance regression
analysis (i.e., PRA-2) has detected a problematic application activity,
but from the results of the root cause analysis (i.e., RCA-1), we
found that the identified problematic application activity seems to
be responsible for a lot of work and is associatedwithmany changed
source code files (around 30 files), making it difficult to pinpoint
the real root cause. By combining these findings with the results
from our performance outlier analysis (i.e., PAA-1), we confirmed
that one of the changed source code files added an inefficient SQL
query that executes for a couple of minutes (the results are shown

in Table 1). We also provided the corresponding application code
changes related to this query to developers for further optimization.

5.6 Detected Improvement 6 (DI-6)
The last detected case (i.e., DI-6) is a performance improvement
due to the optimization of a SQL query in the new version. Our ma-
chine learning model-based performance regression analysis (i.e.,
PRA-2) successfully detected this case. The results shown in Table 1
reveal that the new version is more likely to perform better (i.e.,
consumes less CPU) than the old version when handling similar
workloads since the system performance predicted by the model
constructed from the old version (i.e., the red line) is often higher
than the actual performance (i.e., the blue line). The results of our
root cause analysis (i.e., RCA-1) indicate that this performance im-
provement was accomplished by several updates to an existing
complex SQL query. After discussing the results with senior devel-
opers, we confirmed that the developers who made these updates
opted to use a subquery with the EXISTS function in replace of the
DISTINCT function in an SQL query to retrieve data from multiple
tables. Such an update helps to avoid the additional performance
overhead of scanning the entire table and sorting the retrieved rows
before suppressing the duplicates. Furthermore, the updates also
enable the query execution to stop early when specific conditions
are met, thereby further improving performance, particularly when
processing extensive amounts of user data. This detected case also
indicates that our solution can derive good practices from detected
performance improvement cases. We can utilize these cases as ex-
amples for developers to help them learn good coding practices and
avoid sub-optimal practices in future development tasks.

6 RELATEDWORK
In the following, we discuss prior work that is relevant to our
study. The related work is categorized into two aspects: 1) diagnos-
ing performance issues in large-scale systems; and 2) improving
database-centric system quality.

Diagnosing performance issues in large-scale systems. Prior
studies have proposed various approaches to assist developers and
operators in diagnosing performance issues in large-scale software
systems. These existing techniques collect and utilize different
sources of data to analyze the performance of a software system.
Analyzing and comparing the system performancemetrics collected
during runtime is the most straightforward approach to diagnosing
system performance problems [17, 18, 31, 32, 34–37, 46, 55]. For
instance, Mariani et al. [32] propose a lightweight approach that
exploits the causality graph of multi-level performance metrics
to pinpoint the performance anomalies in cloud systems. Nguyen
et al. [37] combines machine learning techniques (e.g., Random-
Forest [10] and SMO [39]) to mine the relationship between per-
formance metrics and performance regression root causes from
historical versions to predict the root causes in the new versions.

System execution logs are also an important source of data that
are widely utilized to analyze system performance issues. Jiang et
al. develop various algorithms to mine the execution logs of the run-
time systems to uncover the functional [24] and performance [25]
anomalies in load tests. Altman et al. propose WAIT [8] to diagnose
the performance issues caused by idle time in applications from

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Lizhi Liao et al.

execution logs. Lu et al. [28] develop an approach for performance
abnormal analysis in Apache Spark system [3]. They extract the
CPU-related features, execution path features, and garbage collec-
tion features from the raw execution logs, then build a statistical
model based on these features to identify the performance anomaly
and locate the corresponding root causes by using weighted factors.

Prior research also utilizes system source code to diagnose perfor-
mance issues [6, 12, 23, 29, 41]. For example, Heger et al. [23] analyze
both the source code of the system and the performance metrics
collected during unit testing to identify the code commits that in-
troduce the performance issues. Luo et al. [29] propose PerfImpact
based on genetic algorithms to automatically provide developers
with the system inputs and source code changes that potentially
lead to performance regressions across different software versions.

The aforementioned studies focus mostly on traditional appli-
cations while lacking the consideration of the database. Distinct
from them, we target a large-scale database-centric system from
the industry (i.e., EA) with special attention to not only the runtime
behavior and performance of the database but also its interactions
with the surrounding applications.

Improving database-centric system quality. Due to the wide-
spread use of databases in practice, a great number of studies
have been conducted to improve database-centric system quality.
Grechanik et al. [20, 21] develop approaches that utilize static and
dynamic code analysis techniques to detect and prevent database
deadlocks in database-centric systems. Rigger and Su utilize mul-
tiple analysis techniques, such as query partitioning [43], pivoted
query synthesis [44], or non-optimizing reference engine construc-
tion [42] to detect database logic bugs that are critical in database-
centric system quality but often go unnoticed by developers.

Prior studies also discuss and summarize many common perfor-
mance issues (e.g., source code-level performance anti-patterns [48,
49] or ORM-level performance anti-patterns [56, 57]) in database-
centric systems and suggest solutions to alleviate or eliminate the
adverse performance impact. Based on these studies, extensive work
has been proposed to detect performance anti-patterns, for example,
Yan et al. [58] develop a RubyMine IDE plugin for Ruby on Rails
systems by using static code analysis techniques to automatically
detect ORM-level performance issues and provide the correspond-
ing fixes. Chen et al. [11] provide an experience report on detecting
and refactoring performance anti-patterns in an industrial system
written in PHPwith Laravel framework. They utilize both static and
dynamic techniques in their approach. Lyu et al. [30] develop novel
abstractions for the interactions between application and database,
and detect 11 types of SQL anti-patterns on a set of 1,000 prevalent
Android apps. Chen et al. [13–15] analyze various performance
anti-patterns in the database-centric systems implemented in Java
with Hibernate ORM framework.

The main focus of prior work is on optimizing the functional
aspect or the performance of individual components of the database
like optimizing SQL queries or database access code (e.g., ORM)
under a fixed testing workload. Our work takes into consideration
the performance of the entire running system (including both the
database and the surrounding applications) and the continuously
varying workload in the production scenario in order to effectively
assist developers in diagnosing performance issues of a real-world
database-centric system.

7 THREATS TO VALIDITY
This section discusses potential threats to the construct, external,
and internal validity of our study.

Construct validity. In our study, we opt to leverage a built-in
performance profiling tool in Windows (i.e., TypePerf) to monitor
the system-level runtime performance and a community-maintained
SQL Server stored procedure (i.e., sp_whoisactive) to capture the
query-level database runtime behavior. Therefore, the quality of
the recorded runtime performance metrics and behaviors may be a
threat to the construct validity of our study. In addition, for the per-
formance outlier analysis (i.e., PAA-1), we do not distinguish each
type of database or application activity. Future work may separate
each activity to examine the anomalies within each type of activity.

External validity.Our work is conducted on a large-scale enter-
prise system from our industrial collaborator, which is developed
in the .NET framework with the Microsoft SQL server. Although
our subject is a mature database-centric system with many years
of development and maintenance history, which has a certain rep-
resentativeness, it may still limit the generalization of our study
results and findings to other systems.

Internal validity. Our solution depends on multiple statistical
analysis techniques to detect performance anomalies or regres-
sions within or across system releases. However, our approach may
not perform well on small systems with an insufficient amount of
data due to the nature of the statistical analysis. Besides, statisti-
cal analysis techniques often rely on the threshold to determine
the statistical significance. However, in practice, determining the
significance usually depends on the subjective judgment of the
performance analysts.

8 CONCLUSION
In this paper, we report our experience in adapting performance
analytic techniques to effectively assist developers in detecting
performance issues and identifying the corresponding root causes
for a large-scale database-centric system from our industrial col-
laborator. We share our challenges and solutions for exposing the
runtime measurement of the database for performance analytics
and exposing the source code from the database for performance
root-cause analysis. We also share the implemented database-aware
performance analysis, including detecting performance anomalies
within one release, identifying performance regressions between
two releases, and root cause analysis, as well as the discussions of
the real-world performance issues detected by our analysis. We an-
ticipate that our engineering solution and documented experience
can provide helpful insights into ensuring and improving the per-
formance of large-scale database-centric systems for both research
and practice.

ACKNOWLEDGMENTS
We are grateful to ERA Environmental Management Solutions for
providing access to the industrial system used in our study. The find-
ings and opinions expressed in this paper are those of the authors
and do not necessarily represent or reflect those of ERA Environ-
mental Management Solutions and/or its subsidiaries and affiliates.
Moreover, our results do not in any way reflect the quality of ERA
Environmental Management Solutions’ products.

Adapting Performance Analytic Techniques in a Real-World Database-Centric System ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

REFERENCES
[1] 2014. CanaryRelease. Retrieved Mar. 7, 2023 from https://martinfowler.com/

bliki/CanaryRelease.html
[2] 2017. sp_whoisactive SQL Server Monitoring Stored Procedure by Adam Ma-

chanic. Retrieved Jan. 23, 2023 from http://whoisactive.com
[3] 2022. Apache Spark - Unified Engine for large-scale data analytics. Retrieved

Mar. 15, 2023 from https://spark.apache.org/
[4] 2022. Apache Tomcat® - Welcome! Retrieved Jan. 7, 2023 from https://tomcat.

apache.org/
[5] 2022. typeperf|Microsoft. Retrieved Jan. 17, 2023 from https://learn.microsoft.

com/en-us/windows-server/administration/windows-commands/typeperf
[6] Juan Pablo Sandoval Alcocer, Alexandre Bergel, and Marco Tulio Valente. 2016.

Learning from Source Code History to Identify Performance Failures. In Proceed-
ings of the 7th ACM/SPEC International Conference on Performance Engineering,
ICPE 2016, Delft, The Netherlands, March 12-16, 2016. ACM, 37–48.

[7] Hamzeh Alimohammadi and Shengnan Nancy Chen. 2022. Performance eval-
uation of outlier detection techniques in production timeseries: A systematic
review and meta-analysis. Expert Syst. Appl. 191 (2022), 116371.

[8] Erik R. Altman, Matthew Arnold, Stephen Fink, and Nick Mitchell. 2010. Perfor-
mance analysis of idle programs. In Proceedings of the 25th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2010, October 17-21, 2010, Reno/Tahoe, Nevada, USA. ACM, 739–753.

[9] André B Bondi. 2015. Foundations of software and system performance engineer-
ing: process, performance modeling, requirements, testing, scalability, and practice.
Pearson Education.

[10] Leo Breiman. 2001. Random Forests. Mach. Learn. 45, 1 (2001), 5–32.
[11] Boyuan Chen, Zhen Ming Jiang, Paul Matos, and Michael Lacaria. 2019. An Indus-

trial Experience Report on Performance-Aware Refactoring on aDatabase-Centric
Web Application. In 34th IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE 2019, San Diego, CA, USA, November 11-15, 2019. IEEE,
653–664.

[12] Jinfu Chen and Weiyi Shang. 2017. An Exploratory Study of Performance Re-
gression Introducing Code Changes. In 2017 IEEE International Conference on
Software Maintenance and Evolution, ICSME 2017, Shanghai, China, September
17-22, 2017. IEEE Computer Society, 341–352.

[13] Tse-Hsun Chen, Weiyi Shang, Ahmed E. Hassan, Mohamed N. Nasser, and Par-
minder Flora. 2016. Detecting problems in the database access code of large scale
systems: an industrial experience report. In Proceedings of the 38th International
Conference on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016 -
Companion Volume. ACM, 71–80.

[14] Tse-Hsun Chen, Weiyi Shang, Zhen Ming Jiang, Ahmed E. Hassan, Mohamed N.
Nasser, and Parminder Flora. 2014. Detecting performance anti-patterns for
applications developed using object-relational mapping. In 36th International
Conference on Software Engineering, ICSE ’14, Hyderabad, India - May 31 - June
07, 2014. ACM, 1001–1012.

[15] Tse-Hsun Chen, Weiyi Shang, Zhen Ming Jiang, Ahmed E. Hassan, Mohamed N.
Nasser, and Parminder Flora. 2016. Finding and Evaluating the Performance
Impact of Redundant Data Access for Applications that are Developed Using
Object-Relational Mapping Frameworks. IEEE Trans. Software Eng. 42, 12 (2016),
1148–1161.

[16] Tse-Hsun Chen, Mark D. Syer, Weiyi Shang, Zhen Ming Jiang, Ahmed E. Hassan,
Mohamed N. Nasser, and Parminder Flora. 2017. Analytics-Driven Load Testing:
An Industrial Experience Report on Load Testing of Large-Scale Systems. In 39th
IEEE/ACM International Conference on Software Engineering: Software Engineering
in Practice Track, ICSE-SEIP 2017, Buenos Aires, Argentina, May 20-28, 2017. IEEE
Computer Society, 243–252.

[17] King Chun Foo, Zhen Ming Jiang, Bram Adams, Ahmed E. Hassan, Ying Zou,
and Parminder Flora. 2010. Mining Performance Regression Testing Repositories
for Automated Performance Analysis. In Proceedings of the 10th International
Conference on Quality Software, QSIC 2010, Zhangjiajie, China, 14-15 July 2010.
IEEE Computer Society, 32–41.

[18] King Chun Foo, Zhen Ming Jiang, Bram Adams, Ahmed E. Hassan, Ying Zou, and
Parminder Flora. 2015. An Industrial Case Study on the Automated Detection of
Performance Regressions in Heterogeneous Environments. In 37th IEEE/ACM
International Conference on Software Engineering, ICSE 2015, Florence, Italy, May
16-24, 2015, Volume 2. IEEE Computer Society, 159–168.

[19] David A Freedman. 2009. Statistical models: theory and practice. cambridge
university press.

[20] Mark Grechanik, B. M. Mainul Hossain, and Ugo A. Buy. 2013. Testing Database-
Centric Applications for Causes of Database Deadlocks. In Sixth IEEE International
Conference on Software Testing, Verification and Validation, ICST 2013, Luxembourg,
Luxembourg, March 18-22, 2013. IEEE Computer Society, 174–183.

[21] Mark Grechanik, B. M. Mainul Hossain, Ugo A. Buy, and Haisheng Wang. 2013.
Preventing database deadlocks in applications. In Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering, ESEC/FSE’13, Saint Petersburg, Russian Federation,
August 18-26, 2013. ACM, 356–366.

[22] Wilhelm Hasselbring and André van Hoorn. 2020. Kieker: A monitoring frame-
work for software engineering research. Softw. Impacts 5 (2020), 100019.

[23] Christoph Heger, Jens Happe, and Roozbeh Farahbod. 2013. Automated root
cause isolation of performance regressions during software development. In
ACM/SPEC International Conference on Performance Engineering, ICPE’13, Prague,
Czech Republic - April 21 - 24, 2013. ACM, 27–38.

[24] Zhen Ming Jiang, Ahmed E. Hassan, Gilbert Hamann, and Parminder Flora. 2008.
Automatic identification of load testing problems. In 24th IEEE International
Conference on Software Maintenance (ICSM 2008), September 28 - October 4, 2008,
Beijing, China. IEEE Computer Society, 307–316.

[25] Zhen Ming Jiang, Ahmed E. Hassan, Gilbert Hamann, and Parminder Flora.
2009. Automated performance analysis of load tests. In 25th IEEE International
Conference on Software Maintenance (ICSM 2009), September 20-26, 2009, Edmonton,
Alberta, Canada. IEEE Computer Society, 125–134.

[26] Toon Koppelaars. 2004. A database-centric approach to j2ee application develop-
ment. Oracle Development Tools Users Group (ODTUG) (2004).

[27] Lizhi Liao, Jinfu Chen, Heng Li, Yi Zeng, Weiyi Shang, Catalin Sporea, Andrei
Toma, and Sarah Sajedi. 2021. Locating Performance Regression Root Causes
in the Field Operations of Web-based Systems: An Experience Report. IEEE
Transactions on Software Engineering (2021), 1–1.

[28] Siyang Lu, BingBing Rao, Xiang Wei, Byung-Chul Tak, Long Wang, and Liqiang
Wang. 2017. Log-based Abnormal Task Detection and Root Cause Analysis for
Spark. In 2017 IEEE International Conference on Web Services, ICWS 2017, Honolulu,
HI, USA, June 25-30, 2017. IEEE, 389–396.

[29] Qi Luo, Denys Poshyvanyk, and Mark Grechanik. 2016. Mining performance
regression inducing code changes in evolving software. In Proceedings of the 13th
International Conference on Mining Software Repositories, MSR 2016, Austin, TX,
USA, May 14-22, 2016. ACM, 25–36.

[30] Yingjun Lyu, Sasha Volokh, William G. J. Halfond, and Omer Tripp. 2021. SAND:
a static analysis approach for detecting SQL antipatterns. In ISSTA ’21: 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis, Virtual Event,
Denmark, July 11-17, 2021. ACM, 270–282.

[31] Haroon Malik, Hadi Hemmati, and Ahmed E. Hassan. 2013. Automatic detection
of performance deviations in the load testing of large scale systems. In 35th
International Conference on Software Engineering, ICSE ’13, San Francisco, CA,
USA, May 18-26, 2013. IEEE Computer Society, 1012–1021.

[32] Leonardo Mariani, Cristina Monni, Mauro Pezzè, Oliviero Riganelli, and Rui Xin.
2018. Localizing Faults in Cloud Systems. In 11th IEEE International Conference
on Software Testing, Verification and Validation, ICST 2018, Västerås, Sweden, April
9-13, 2018. IEEE Computer Society, 262–273.

[33] Loup Meurice, Csaba Nagy, and Anthony Cleve. 2016. Static analysis of dynamic
database usage in java systems. In Advanced Information Systems Engineering:
28th International Conference, CAiSE 2016, Ljubljana, Slovenia, June 13-17, 2016.
Proceedings 28. Springer, 491–506.

[34] ThanhH. D. Nguyen. 2012. Using Control Charts for Detecting andUnderstanding
Performance Regressions in Large Software. In Fifth IEEE International Conference
on Software Testing, Verification and Validation, ICST 2012, Montreal, QC, Canada,
April 17-21, 2012. IEEE Computer Society, 491–494.

[35] Thanh H. D. Nguyen, Bram Adams, Zhen Ming Jiang, Ahmed E. Hassan, Mo-
hamed N. Nasser, and Parminder Flora. 2011. Automated Verification of Load
Tests Using Control Charts. In 18th Asia Pacific Software Engineering Conference,
APSEC 2011, Ho Chi Minh, Vietnam, December 5-8, 2011. IEEE Computer Society,
282–289.

[36] Thanh H. D. Nguyen, Bram Adams, Zhen Ming Jiang, Ahmed E. Hassan, Mo-
hamed N. Nasser, and Parminder Flora. 2012. Automated detection of perfor-
mance regressions using statistical process control techniques. In Third Joint
WOSP/SIPEW International Conference on Performance Engineering, ICPE’12,
Boston, MA, USA - April 22 - 25, 2012. ACM, 299–310.

[37] Thanh H. D. Nguyen, Meiyappan Nagappan, Ahmed E. Hassan, Mohamed N.
Nasser, and Parminder Flora. 2014. An industrial case study of automatically
identifying performance regression-causes. In 11th Working Conference on Mining
Software Repositories, MSR 2014, Proceedings, May 31 - June 1, 2014, Hyderabad,
India. ACM, 232–241.

[38] George Papadimitriou, Cong Wang, Karan Vahi, Rafael Ferreira da Silva, Anirban
Mandal, Zhengchun Liu, Rajiv Mayani, Mats Rynge, Mariam Kiran, Vickie E.
Lynch, Rajkumar Kettimuthu, Ewa Deelman, Jeffrey S. Vetter, and Ian T. Foster.
2021. End-to-end online performance data capture and analysis for scientific
workflows. Future Gener. Comput. Syst. 117 (2021), 387–400.

[39] John C. Platt. 1999. Fast Training of Support Vector Machines Using Sequential
Minimal Optimization. MIT Press, Cambridge, MA, USA, 185–208.

[40] John W Ratcliff, David Metzener, et al. 1988. Pattern matching: The gestalt
approach. Dr. Dobb’s Journal 13, 7 (1988), 46.

[41] David Georg Reichelt, Stefan Kühne, and Wilhelm Hasselbring. 2019. PeASS:
A Tool for Identifying Performance Changes at Code Level. In 34th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2019, San Diego,
CA, USA, November 11-15, 2019. IEEE, 1146–1149.

[42] Manuel Rigger and Zhendong Su. 2020. Detecting optimization bugs in database
engines via non-optimizing reference engine construction. In ESEC/FSE ’20: 28th

https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/CanaryRelease.html
http://whoisactive.com
https://spark.apache.org/
https://tomcat.apache.org/
https://tomcat.apache.org/
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/typeperf
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/typeperf

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Lizhi Liao et al.

ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, Virtual Event, USA, November 8-13, 2020.
ACM, 1140–1152.

[43] Manuel Rigger and Zhendong Su. 2020. Finding bugs in database systems via
query partitioning. Proc. ACM Program. Lang. 4, OOPSLA (2020), 211:1–211:30.

[44] Manuel Rigger and Zhendong Su. 2020. Testing Database Engines via Pivoted
Query Synthesis. In 14th USENIX Symposium on Operating Systems Design and Im-
plementation, OSDI 2020, Virtual Event, November 4-6, 2020. USENIX Association,
667–682.

[45] Peter J Rousseeuw and Mia Hubert. 2011. Robust statistics for outlier detection.
Wiley interdisciplinary reviews: Data mining and knowledge discovery 1, 1 (2011),
73–79.

[46] Weiyi Shang, Ahmed E. Hassan, Mohamed N. Nasser, and Parminder Flora. 2015.
Automated Detection of Performance Regressions Using Regression Models on
Clustered Performance Counters. In Proceedings of the 6th ACM/SPEC Interna-
tional Conference on Performance Engineering, Austin, TX, USA, January 31 -
February 4, 2015. ACM, 15–26.

[47] Connie U. Smith. 2007. Introduction to Software Performance Engineering:
Origins and Outstanding Problems. In Formal Methods for Performance Evalu-
ation, 7th International School on Formal Methods for the Design of Computer,
Communication, and Software Systems, SFM 2007, Bertinoro, Italy, May 28-June 2,
2007, Advanced Lectures (Lecture Notes in Computer Science, Vol. 4486). Springer,
395–428.

[48] Connie U. Smith and Lloyd G. Williams. 2002. New Software Performance
AntiPatterns: More Ways to Shoot Yourself in the Foot. In 28th International
Computer Measurement Group Conference, December 8-13, 2002, Reno, Nevada,
USA, Proceedings. Computer Measurement Group, 667–674.

[49] Connie U. Smith and Lloyd G. Williams. 2003. More New Software Antipatterns:
Even More Ways to Shoot Yourself in the Foot. In 29th International Computer
Measurement Group Conference, December 7-12, 2003, Dallas, Texas, USA, Proceed-
ings. Computer Measurement Group, 717–725.

[50] Connie U. Smith and Lloyd G. Williams. 2003. Software Performance Engineering.
In UML for Real - Design of Embedded Real-Time Systems. Kluwer, 343–365.

[51] André van Hoorn, Jan Waller, and Wilhelm Hasselbring. 2012. Kieker: a frame-
work for application performance monitoring and dynamic software analysis. In

Third Joint WOSP/SIPEW International Conference on Performance Engineering,
ICPE’12, Boston, MA, USA - April 22 - 25, 2012. ACM, 247–248.

[52] HP Vinutha, B Poornima, and BM Sagar. 2018. Detection of outliers using
interquartile range technique from intrusion dataset. In Information and decision
sciences. Springer, 511–518.

[53] Frank Wilcoxon. 1992. Individual comparisons by ranking methods. In Break-
throughs in statistics. Springer, 196–202.

[54] C. Murray Woodside, Greg Franks, and Dorina C. Petriu. 2007. The Future
of Software Performance Engineering. In International Conference on Software
Engineering, ISCE 2007, Workshop on the Future of Software Engineering, FOSE
2007, May 23-25, 2007, Minneapolis, MN, USA. IEEE Computer Society, 171–187.

[55] PengCheng Xiong, Calton Pu, Xiaoyun Zhu, and Rean Griffith. 2013. vPerfGuard:
an automated model-driven framework for application performance diagnosis
in consolidated cloud environments. In ACM/SPEC International Conference on
Performance Engineering, ICPE’13, Prague, Czech Republic - April 21 - 24, 2013.
ACM, 271–282.

[56] Cong Yan, Alvin Cheung, Junwen Yang, and Shan Lu. 2017. Understanding Data-
base Performance Inefficiencies in Real-world Web Applications. In Proceedings
of the 2017 ACM on Conference on Information and Knowledge Management, CIKM
2017, Singapore, November 06 - 10, 2017. ACM, 1299–1308.

[57] Junwen Yang, Pranav Subramaniam, Shan Lu, Cong Yan, and Alvin Cheung.
2018. How not to structure your database-backed web applications: a study of
performance bugs in the wild. In Proceedings of the 40th International Conference
on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018.
ACM, 800–810.

[58] Junwen Yang, Cong Yan, Pranav Subramaniam, Shan Lu, and Alvin Cheung.
2018. PowerStation: automatically detecting and fixing inefficiencies of database-
backed web applications in IDE. In Proceedings of the 2018 ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA,
November 04-09, 2018. ACM, 884–887.

Received 2023-05-18; accepted 2023-07-31

	Abstract
	1 Introduction
	2 Background
	3 Challenges and lessons learned
	3.1 C1: Exposing the runtime measurement of the database for performance analytics
	3.2 C2: Exposing the source code from the database for performance root-cause analysis

	4 Implemented analysis
	4.1 Performance anomaly analysis within one release (PAA)
	4.2 Performance regression analysis between two releases (PRA)
	4.3 Root cause analysis (RCA)

	5 Detected Real-World Cases
	5.1 Detected Issue 1 (DI-1)
	5.2 Detected Issue 2 (DI-2)
	5.3 Detected Issue 3 (DI-3)
	5.4 Detected Issue 4 (DI-4)
	5.5 Detected Issue 5 (DI-5)
	5.6 Detected Improvement 6 (DI-6)

	6 Related work
	7 Threats to validity
	8 Conclusion
	Acknowledgments
	References

