
Understanding Quantum Software Engineering Challenges
An Empirical Study on Stack Exchange Forums and GitHub Issues

Mohamed Raed El aoun, Heng Li, Foutse Khomh, Moses Openja
Department of Computer Engineering and Software Engineering

Polytechnique Montréal, Montréal, QC, Canada
{mohamed-raed.el-aoun, heng.li, foutse.khomh, moses.openja}@polymtl.ca

Abstract—With the advance of quantum computing, quan-
tum software becomes critical for exploring the full potential
of quantum computing systems. Recently, quantum software
engineering (QSE) becomes an emerging area attracting more
and more attention. However, it is not clear what are the
challenges and opportunities of quantum computing facing the
software engineering community. This work aims to understand
the QSE-related challenges perceived by developers. We perform
an empirical study on Stack Exchange forums where developers
post-QSE-related questions & answers and Github issue reports
where developers raise QSE-related issues in practical quantum
computing projects. Based on an existing taxonomy of question
types on Stack Overflow, we first perform a qualitative analysis
of the types of QSE-related questions asked on Stack Exchange
forums. We then use automated topic modeling to uncover the
topics in QSE-related Stack Exchange posts and GitHub issue
reports. Our study highlights some particularly challenging areas
of QSE that are different from that of traditional software
engineering, such as explaining the theory behind quantum
computing code, interpreting quantum program outputs, and
bridging the knowledge gap between quantum computing and
classical computing, as well as their associated opportunities.

Index Terms—Quantum computing, Quantum software engi-
neering, Topic modeling, Stack Exchange, Issue reports.

I. INTRODUCTION

Over the past decades, quantum computing has made steady
and remarkable progress [1]–[3]. For example, IBM Quantum
[4] now supports developers to develop quantum applica-
tions using its programming framework and execute them
on its cloud-based quantum computers. Based on the quan-
tum mechanics principles of superposition (quantum
objects can be in different states at the same time) [5] and
entanglement (quantum objects can be deeply connected
without direct physical interaction) [6], quantum computers
are expected to make revolutionary computation improvement
over today’s classical computers [7]. In particular, quantum
computing is expected to help solve the computational prob-
lems that are difficult for today’s classical computers, includ-
ing problems in cryptography, chemistry, financial services,
medicine, and national security [8].

The success of quantum computing will not be accom-
plished without quantum software. Several quantum program-
ming languages (e.g., QCL [9]) and development tools (e.g.,
Qiskit [10] have been developed since the first quantum
computers. Large software companies like Google [11], IBM
[4], and Microsoft [12] have developed their technologies
for quantum software development. Quantum software de-
velopers have also achieved some preliminary success in

applying quantum software to certain computational areas (e.g,
machine learning [13], optimization [14], cryptography [15],
and chemistry [16]). However, there still lacks large-scale
quantum software. Much like Software Engineering is needed
for developing large-scale traditional software, the concept of
Quantum Software Engineering (QSE) has been proposed to
support and guide the development of large-scale, industrial-
level quantum software applications. This concept has been
gaining more and more attention recently [3], [8], [17].
QSE aims to apply or adapt existing software engineering
processes, methods, techniques, practices, and principles to
the development of quantum software applications, or create
new ones [8]. Pioneering work sheds light on new directions
for QSE, such as quantum software processes & methodolo-
gies [18], quantum software modeling [19], and design of
quantum hybrid systems [20]. In the meanwhile, we observe
an exponential increase of discussions related to quantum
software development on technical Q&A forums such as Stack
Overflow(e.g. from 8 in 2010 to 1434 in 2020). We also
notice an increasing number of quantum software projects
hosted on GitHub, where developers use issue reports to track
their development and issue fixing processes. Such technical
Q&As and issue reports may communicate developers’ faced
challenges when developing quantum software applications.

In this paper, we aim to understand the challenges perceived
by quantum software developers and seek opportunities for
future QSE research and practice. In particular, we examine
technical Q&A forums where developers ask QSE-related
questions, and GitHub issue reports where developers raise
QSE-related issues. We apply a series of heuristics to search
and filter Q&A posts that are related to QSE and to search and
filter GitHub projects that are related to quantum software. In
total, we extract and analyze 3,117 Q&A posts and 43,979
Github issues that are related to QSE. We combine manual
analysis and automated topic modeling to examine these Q&A
posts and Github issues, to understand the QSE challenges
developers are facing. In particular, our study aims to answer
the three following research questions (RQs):

RQ1: What types of QSE questions are asked on technical
forums? To understand the intention behind develop-
ers’ questions on technical forums and the types of
information that they are seeking, we manually ex-
amined a statistically representative sample of ques-
tions. We extended a previous taxonomy from prior

work [21] and found nine categories of questions.
Our results highlight the need for future efforts to
support developers’ quantum program development,
in particular, to develop learning resources, to help
developers fix errors, and to explain the theory be-
hind quantum computing code.

RQ2: What QSE topics are raised in technical forums?
The QSE-related posts may reflect developers’ chal-
lenges when learning or developing quantum pro-
grams. To understand their faced challenges, we
use topic models to extract the semantic topics
in their posts. We derived nine topics includ-
ing traditional software engineering topics (e.g.,
environment management and dependency
management) and QSE-specific topics (e.g.,
quantum execution results and quantum
vs. classical computing). We highlighted
some particularly challenging areas for QSE, such as
interpreting quantum program outputs, understand-
ing quantum algorithm complexity, and bridging the
knowledge gap between quantum computing and
classical computing.

RQ3: What QSE topics are raised in the issue reports of
quantum-computing projects? Issue reports of quan-
tum computing projects record developers’ concerns
and discussions when developing these projects.
Thus, we analyze the topics in the issue reports to
understand the challenges are developers facing in
practical quantum computing projects. We observe
that the QSE-related challenges that we derived from
forum posts indeed impact practical quantum pro-
gram development in these GitHub projects, while
GitHub issues bring new perspectives on developers’
faced challenges (e.g., on specific quantum com-
puting applications such as machine learning). We
also observe that such challenges are general among
quantum computing projects.

Paper organization. The rest of the paper is organized as fol-
lows. In Section II we discuss the background about quantum
software engineering and the related work. Then, in Section III
we describe the design of our study. In Section IV we present
our results. Section V discusses threats to the validity of our
findings. Finally, Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

This study aims to understand the quantum software en-
gineering challenges through examining technical forum posts
and GitHub issue reports. In this section, we present the back-
ground and prior work related to our study. First, we describe
the background and related work of quantum computing,
quantum programming, and quantum software engineering.
Then, we discuss prior work that performs topic analysis on
technical forum posts and issue reports.

A. Quantum Computing

Quantum computers aim to leverage the principles
of quantum mechanics such as superposition and
entanglement to provide computing speed faster than
today’s classical computers. While classical computers use
bits in the form of electrical pulses to represent 1s and 0s,
quantum computers use quantum bits or Qubits in the form
of subatomic particles such as electrons or photons to represent
1s and 0s. A Qubit, unlike a classical bit, can be 0 or 1 with
a certain probability, which is known as the superposition
principle [22]. In other words, a quantum computer consisting
of Qubits is in many different states at the same time. When a
Qubit is measured, it collapses into a deterministic classical
state. The status of two or more of Qubits can be correlated
(or entangled) in the sense that changing the status of one
Qubit will change the status of the others in a predictable
way, which is known as the entanglement phenomenon [22].
The superposition and entanglement phenomenons
give quantum computers advantages over classical computers
in performing large-scale parallel computation [22].

Similar to classical logic gates (e.g., AND, OR, NOT),
quantum logic gates (or quantum gates) alter the states (the
probability of being 0 or 1) of the input Qubits. Like classical
digit circuits, quantum circuits are collections of quantum
logic gates interconnected by quantum wires. Figure 1 il-
lustrates the architecture of a quantum computer [3], [23].
The architecture contains two layers: a quantum computing
layer where the quantum physics and circuits reside, and a
classical computing layer where the quantum programming
environment and software applications reside.

• Physical building blocks: physical realization of Qubits
and their coupling/interconnect circuitry.

• Quantum logic gates: physical circuitry for quantum logic
gates.

• Quantum-classical computer interface: the hardware and
software that provides the boundary between classical
computers and the quantum computing layer.

• Quantum programming environment: quantum program-
ming languages and development environment.

• Business applications: quantum software applications
(based on quantum programming languages) that meet
specific business requirements

Fig. 1. The architecture of a quantum computer [3], [23]
.B. Quantum Programming

Quantum computing as a new general paradigm can mas-
sively influence how software is developed [3], [8], [24].
Quantum programming is the process to design an executable
quantum program to accomplish a specific task [24]. Quantum
programming uses syntax-based notations to represent and
operate quantum circuits and gates. Early efforts of quantum

programming language development focused on the quantum
Turing machine [25] but did not produce practical quan-
tum programming languages. Later efforts have turned to
the quantum circuits model where the quantum system is
controlled by a classical computer [26]. This concept has given
birth to many new quantum programming languages such as
qGCL [27], LanQ [28], Q# [29] and Qiskit [10]. Prior work
conducted extensive exploration along the lines of quantum
programming [24] and quantum software development envi-
ronments [30]. The survey [3] also provides a comprehensive
overview of research works along these lines.
C. Quantum Software Engineering

Quantum software engineering (QSE) is still in its infancy.
As the result of the first International Workshop on Quan-
tum Software Engineering & Programming (QANSWER), re-
searchers and practitioners proposed the “Talavera Manifesto”
for quantum software engineering and programming, which
defines a set of principles about QSE [8], including: (1) QSE
is agnostic regarding quantum programming languages and
technologies; (2) QSE embraces the coexistence of classical
and quantum computing; (3) QSE supports the management
of quantum software development projects; (4) QSE considers
the evolution of quantum software; (5) QSE aims at deliver-
ing quantum programs with desirable zero defects; (6) QSE
assures the quality of quantum software; (7) QSE promotes
quantum software reuse; (8) QSE addresses security and
privacy by design; and (9) QSE covers the governance and
management of software.

Zhao [3] performed a comprehensive survey of the exist-
ing technology in various phases of quantum software life
cycle, including requirement analysis, design, implementation,
testing, and maintenance. Prior work [17]–[20] also discussed
challenges and potential directions in QSE research, such as
modeling [19] and quantum software processes & method-
ologies [18], and design of quantum hybrid systems [20].
Different from prior work, this work makes the first attempt to
understand the challenges of QSE perceived by practitioners.
D. Topic Analysis of Technical Q&As

Prior work performs rich studies on technical Q&A data,
especially on Stack Exchange data [31]. Here we focus on
prior work that performs topic analysis on technical Q&A
data. Topic models are used extensively in prior work to
understand the topics of general Stack Overflow posts and
the topic trends [19], [32]–[34]. Prior work also leverages
topic models to understand the topics of Stack Overflow
posts related to specific application development domains,
such as mobile application development [35], [36], client
application development [37], machine learning application
development [38], as well as concurrency [39] and secu-
rity [40] related development. In addition, prior work lever-
ages topic models to understand non-functional requirements
communicated in Stack Overflow posts [41], [42]. Zhang et
al. [43] use topic models to detect duplicate questions in Stack
Overflow. Finally, Treude et al. [44] proposes an automated
approach to suggest configurations of topic models for Stack

Stack Exchange
forums

GitHub
repositories

QSE posts

QSE issues

Manual analysis

Topic model

Topic model

RQ1

RQ2

RQ3

Filtering

Filtering

Sampling

Preprocessing

Preprocessing

Fig. 2. Overview of our empirical study

Overflow data. Most of these studies use the Latent Dirichlet
Allocation (LDA) algorithm or its variants to extract topics
from the technical Q&A data. In this work, we also leverage
the widely used LDA algorithm to extract topics from the
technical Q&A data related to quantum software enginering.

E. Topic Analysis of Issue Reports

Issue reports have been widely explored in prior work.
Here we focus on studies that apply topic analysis on issue
report data. Prior work leverages topic models to automatically
assign issue reports to developers (a.k.a. bug triage) [45]–[48].
These studies first uses topic models to categorize the textual
information in the issue reports, then learn mappings between
the categorized textual information and developers. Prior work
also leverages topic models to automatically detect duplicate
issue reports based on the similarity of their topics [49]–[51].
Nguyen et al. [52] use topic models to associate issue reports
and source code based on their similarities, in order to help
developers narrow down the searched source code space when
resolving an issue. Finally, prior work also studies the trends
of topics in issue reports [53], [54]. LDA and its variants are
the most popular topic modeling approaches used in these
studies. Therefore, we also leverage LDA to extract topics
from GitHub issue reports related to QSE.

III. EXPERIMENT SETUP

This section describes the design of our empirical study.

A. Overview

Figure 2 provides an overview of our empirical study.
We study QSE-related posts on Stack Exchange (SE) forums
and the issue reports of quantum computing GitHub projects.
From Stack Exchange forums, we first use tags to filter QSE-
related posts. In RQ1, we manually analyze a statistically
representative sample of these posts to understand the type of
information sought by developers. In RQ2, we use automated
topic models to analyze the topics of these posts and their
characteristics. From GitHub repositories, we first apply a set
of heuristic rules to filter the quantum computing projects.
Then we extract the issue reports of these quantum computing
projects. Finally, we perform topics modeling on these issue
reports to analyze the topics in the textual information of
the issue reports (RQ3). We describe the details of our data
collection and analysis approaches in the rest of this section.

B. Stack Exchange forums data collection

We follow three steps to collect QSE related data from Stack
Exchange forums. First, we collect Q&A data from four Stack
Exchange forums. Second, we identify a set of tags that are
related to QSE. Finally, we use the identified tags to select the
posts that are related to QSE. We explain the steps below.
Step 1: Collecting technical Q&A data. We extract technical
Q&A data from four Stack Exchange forums: Stack Overflow
[55], Quantum Computing Stack Exchange [56], Computer
Science Stack Exchange [57], and Artificial Intelligence Stack
Exchange [58]. We consider the Stack Overflow forum as
it contains posts related to quantum programming and it is
widely used for studying various software engineering topics
(e.g., mobile app development [35], [36], machine learning
application development [38], etc.). We consider the other
three forums because they contain posts that discuss topics
related to quantum computing and quantum programming. We
extracted the post data from these forums with the help of
the Stack Exchange Data Explorer [59]. Stack Exchange data
explorer holds an up to date data for these forum between
08-2008 and 03-2021.
Step 2: Identifying tags related to QSE. The studied
Stack Exchange forums use user defined tags to categorize
questions. We follow two sub-steps to select the tags that
are related to QSE. We started by searching for questions
with the tag “quantum-computing” in the entire Stack Ex-
change dataset D through the data exchange explorer. We
obtained 254 questions tagged with “quantum-computing”
from the studied forums. After manually inspecting the 30
most voted questions, we selected an initial tag set Tinit con-
sisting of ten tags including “quantum-computing”, “qiskit”,
“qsharp”, “q#”, “quantum-development”, “quantum-circuit”,
“ibmq”, “quantum-ai”, “qubit” and “qutip”. Then we extracted
the questions related to Tinit from the initial dataset D and
obtained a new set of questions P . In order to expand the
initial tag set, we extracted the frequently co-occurring tags
with Tinit from P and build a new tag set T2.

Not all the tags in T2 are related to quantum computing.
To determine the final tag set Tfinal, following previous
work [60] [61], we filter the tags in T2 based on their
relationships when the initial tag set Tinit. For each tag t in
T2, we calculate:

(Significance)α(t) =
of questions with tag t in P
of questions with tag t in D

(1)

(Relevance)β(t) =
of questions with tag t in P

of questions in P
(2)

To select a tag t, the value of significance-relevance α(t),
β(t) need to be higher than a threshold we set. To select the
optimal threshold values for α and β, we experimented with a
set of values respectively between 0.05, 0.35 and 0.001, 0.03.
For each α and β and for each tag above the threshold, we
inspected the top 10 most voted posts and verified if the tag
is related to QSE, we ended up with the optimal threshold
respectively equal to 0.005 and 0.2 which are consistent with

TABLE I
OUR SELECTED TAGS AND THE NUMBER OF QUESTIONS AND ANSWERS

Stack Ex. forum Tag set #Q #A

Stack overflow
post-quantum-cryptography, q#,
quantum-computing, qiskit, qcl,
qutip, qubit, tensorflow-quantum

250 183

Quantum computing
programming, classicalcomputing,
q#, qiskit, cirq, ibm-q-experience,
machine-learning, qutip

1534 778

Computer science quantum-computing 238 117

Artificial intelligence quantum-computing 13 4

previous work [62] [61]. The final tag set Tfinal is formed of
37 tags in total. Since quantum computing is a wide topic
and our focus is QSE, we further manually inspected the
description of each tag t in Tfinal and the top 10 questions
of each tag in each studied forum to remove tags that are not
related to QSE. Finally our tag set Tfinal was reduced from
37 to 18 tags (14 unique tags as different forums have tags
with the same names). Table I lists our final set of tags.
Step 3: Selecting questions and answers. We extract the
final sets of questions and answers using the final tag sets
shown in Table I. We select all the posts that are tagged with
at least one of the tags. We ended up with a total of 3,117
questions and answers from the four considered forums in our
data set Dfinal. 35% of the final data are answers where 65%
are questions. The number of posts (questions and answers)
extracted from each forum is shown in Table I.

C. GitHub issues data collection

In this work, we study the issue reports of quantum comput-
ing projects on GitHub. We downloaded the GitHub selected
quantum computing projects issues in March 2021. We follow
three steps described below to extract the issue reports of
quantum computing projects from GitHub.
Step 1: Searching candidate projects. We search for quantum
computing related projects using three criteria: 1) The descrip-
tion of the project must be in English (i.e., for us to better
understand the content). 2) The project name or description
must contain the word “quantum” (the word quantum is case
sensitive in the project name or description). 3) The project is
in a mainline repository (i.e., not a fork of another repository).
We end up with a total of 1,364 repositories.
Step 2: Filtering quantum computing projects. We filter
the searching result and identify quantum computing related
projects with three criteria: 1) To avoid selecting student
assignments, following previous work [63] [64], we select
repositories that were forked at least two times. 2) The
projects must have a sufficient history of development for
us to analyze the issue reports. Therefore, we select the
projects that were created at least 10 months earlier than the
data extraction date. Moreover, only the projects that have at
least 100 commits and 10 issues are selected. 3) To ensure
the quality of the project selected, we manually inspect the
projects’ descriptions and remove projects that are not related
to quantum computing, projects that are created for hosting
quantum computing related documentation, as well as lecture
notes related to quantum computing. Finally, we obtain a

total of 122 projects directly related to quantum computing
applications.
Step 3: Extracting issue reports. We use the GitHub Rest
API [65] to extract all the issue reports of the final 122 projects
on GitHub. In total, we obtain 43,979 issue reports.

D. Data pre-processing for topic modeling

We build one topic model on the Stack Exchange forum data
and another topic model on the GitHub issue data. Below we
describe how we pre-process these two types of data before
feeding them into topic models.
Pre-processing Q&A post data. We treat each post (i.e.,
a question or an answer) as an individual document in the
topic model. For each question, we join the title and the
body of the question to create a single document. As Q&A
posts contain code snippets between <code> and </code>
which may bring noise to our topic models, we remove
all text between <code> and </code>. We also remove
HTML tags (e.g., <p></p>), URLs and images from each
post. In addition, we remove stop words (e.g., “like”, “this”,
“the”), punctuation, and non-alphabetical characters using the
Mallet and NLTK stop words set. Finally, we apply the Porter
stemming [66] to normalize the words into their base forms
(e.g., “computing” is transformed to “comput”), which can
reduce the dimensionality of the word space and improve the
performance of topic models [67]
Pre-processing issue report data. We treat each issue report
as an individual document in the topic model. We join the title
and the body of each issue as a single document. Similarly, we
remove code snippets, URLs and images from the issue body.
Since there are no tags in GitHub issues that identify code
snippets, we look for backquote ” ” or triple backticks “‘ in the
content of the issues and remove the code enclosed between
this punctuation. We also remove stop words, non-alphabetical
characters, and punctuation. Finally, we apply Porter stemming
to normalize the words into their base forms.

E. Topic modeling

We use automated topic modeling to analyze the topics in
the Q&A posts and issue reports. Specifically, we use the
Latent Dirichlet Allocation (LDA) algorithm [68] to extract the
topics from both of our datasets. LDA is a probabilistic topic
modeling technique that derives the probability distribution of
frequently co-occurred word sets (i.e., topics) in a text corpus.
A topic is represented by a probability distribution of a set
of words, while a document is represented as a probability
distribution of a set of topics. LDA is widely used for modeling
topics in software repositories [69], including technical Q&A
posts (e.g, [70]) and issue reports (e.g., [49]). We use two
separate topic models to extract the topics from the Q&A post
data and the issue report data. For a better performance of the
topic modeling and a good classification quality, following
previous work [61] [71], we consider both uni-gram and bi-
gram of words in our topic models.
LDA Implementation. We use the Python implementation
of the Mallet topic modeling package [72] to perform our
topic modeling. The Mallet package implements the Gibbs

sampling LDA algorithm and uses efficient hyper-parameter
optimization to improve the quality of the derived topics [72].
Determining topic modeling parameters. The number of
topics (K) is usually manually set by the user as it controls
the granularity of the topics [61]. The α parameter controls the
topic distribution in the documents (i.e., Q&A posts or issue
reports), while the β parameter controls the word distribution
in the topics. In this work, we use the topic coherence
score [73] to evaluate the quality of the resulting topics and
determine the appropriate parameters (K, α, and β), similar
to prior work [29], [61]. The coherence score measures the
quality of a topic by measuring the semantic similarity be-
tween the top words in the topic. Thus, this score distinguishes
between topics that are semantically interpretable and topics
that are coincidences of statistical inference [73]. Specifically,
we use the Gensim Python package’s CoherenceModel
[74] module to calculate the coherence scores of the resulting
topics. To capture a wide range of parameters and keep the
topics distinct from each other, we experiment with different
combination of the parameters, by varying the values of K
from 5 to 30 incremented by 1 each time, the values of
document-topic distribution α from 0.01 to 1 incremented by
0.01 [75], and the values of word-topic distribution β from
0.01 to 1 incremented by 0.01 [75]. We retain the resulting
topics with the highest average coherence score.

After getting the automatically derived topics, we manually
analyze the resulting topics and assign meaningful labels to the
topics. We elaborate more on this process in RQ2 and RQ3 for
the Q&A post topics and the issue report topics, respectively.

IV. EXPERIMENT RESULTS

In this section we report and discuss the results of our
three research questions. For each research question, we first
present the motivation and approach, then discuss the results
for answering the research question.

RQ1: What types of QSE questions are asked on technical
forums?

1) Motivation: In order to understand QSE challenges
developers are facing, we first want to understand what types
of questions they are asking (e.g., whether they are asking
questions about using APIs or fixing errors). This is important
to identify the areas in which QSE developers should be
supported and the type of resources that they need. Similar to
prior work [76], we focus on the intent behind the questions
asked by QSE developers instead of the topics of the questions.

2) Approach: To identify the type of questions that users
are asking in technical forums, we performed a manual
analysis of a statistically representative sample from our
studied QSE questions. We sampled 323 questions with a
confidence level of 95% and a confidence interval of 5%. For
each question, we examined its title and body, to understand
the intent of the user who posted the question. We used a
hybrid card sorting approach to perform the manual analysis
and assign labels (i.e., types of questions) to each sampled
question. Specifically, we based our manual analysis on an

existing taxonomy of the types of questions asked on Stack
Overflow [76] and added new types when needed. For each
question we assigned one label; in case a question is associated
with two or more labels, which we found only in a few cases,
we chose the most relevant one.
Hybrid card sorting process. Two authors of the paper (i.e.,
coders) jointly performed the hybrid card sorting. We split
the sampled data into two equal subsets and performed the
sorting in two rounds, similar to prior work [77]. Our process
guaranteed that each question is labelled by both coders.

1) First-round labeling. Each coder labels a different half
of the questions independently.

2) First-round discussion. In order to have a consistent
labeling strategy, we had a meeting to discuss the
labeling results in the first round and reached an agreed-
upon set of labels. A third author of the paper is involved
in the discussion.

3) Revising first-round labels. Each coder updated the
first round labeling results based on the discussion.

4) Second-round labeling. Each coder labeled the other
half of the questions independently based on the agreed-
upon labels in the first round. New labels are allowed
in this round.

5) Second-round discussion. We had a meeting to discuss
the second-round labeling results, validate newly added
labels and verify the consistency of our labels. A third
author is also involved in the discussion.

6) Revising second-round labels. Based on the second-
round discussion, each coder revised the labels and
finalized its individual labeling of the questions. We
calculate the inter-coder agreement after this step.

7) Resolving disagreement. We had a final meeting to
resolve the disagreement in our labeling results and
reached the final label for each question. For each
difference in our labels, the two coders and a third author
discussed the conflict and reached a consensus.

Inter-coder agreement. We measured the inter-coder agree-
ment between the coders and obtained a Cohen’s kappa k
value of 0.73 which indicates a substantial agreement [78].
Therefore our manual labeling results are reliable.

3) Results: Table II shows the result of our qualitative
analysis for identifying the categories of questions in technical
forums. Among the 323 questions we analyzed, we could not
assign a label to only one question. In the table, we provide
the description of each category and how frequent it appears
in our qualitative analysis.
All seven categories of Stack Overflow questions identified
in prior work appear in QSE-related posts. Prior work [76]
identified seven categories of questions on Stack Overflow by
studying Android-related questions, including API usage,
Conceptual, Discrepancy, Errors, Review, API
change, and Learning, ordered by their occurrence fre-
quency. Although quantum computing is still a new area,
people start to ask all these different categories of questions,
indicating that quantum computing face similar software en-
gineering challenges (e.g., API usage and API change)

as other software engineering domains. Similar to prior work,
we find that API usage is the most frequent category with
26.3% instances. The questions of this category are usually
identified by “how to”; e.g., “How to return measurement
probabilities from the QDK Full-state simulator?”
The categories of Errors and Learning are relatively
more frequent in QSE-related questions than in the prior
taxonomy of question categories [76]. Compare to prior
work [76] on classifying Android-related questions, we find
that Errors and Learning questions are relatively more
frequent. As quantum computing is still an emerging domain,
people practicing it face many errors when developing quan-
tum computing applications and they find it challenging to
find learning resource for quantum computing. An example of
the Errors category is “I have Qiskit installed via Anaconda
and a virtual environment set up in Python 3.8. ... I get an
error. I’m not sure what the problem is. How do I fix it?”.
Another example for the Learning category is “How do I
learn Q#? What languages should I know prior to learning
Q#? How do I get started with quantum computing?”. These
findings suggest the need to develop tools or resources to help
developers avoid or address such errors, as well as developing
tutorials, books, and other learning resources to help beginners
get acquainted with quantum computing.
Two new categories of questions (i.e., Theoretical and
Tooling) emerge in QSE-related posts. In fact, the cate-
gory of Theoretical is the second most frequent among all
categories. This category is usually associated with keywords
such as “can someone explain”, “what is”, and “does quan-
tum”. An example question of this category is “What is the
analysis of the Bell Inequality protocol in Cirq’s ‘examples’?”
where Cirq [79] is a Python library for developing quantum
computing applications. This category of questions indicates
that people have challenges understanding the theoretical
concepts behind quantum computing code. Future efforts are
needed to explain such theoretical concepts for developers. The
category of tooling represents questions that are looking
for tools, frameworks, or libraries that can help solve a QSE-
related problem or verifying whether a tool, framework, or
library can help solve a problem. For example, “I want to use
Blender and Blender Python Scripts working with Qiskit. How
can I do this? How to make communication between Blender
and Qiskit installed with Anaconda Python?”. This category
indicates the lack of established tools for supporting quantum
program development.

We identified nine categories of QSE-related
questions in Stack Exchange forums. The categories
Theoretical, Errors, Learning, and
Tooling are new or become more frequent in
QSE-related questions. Our results highlight the need
for future efforts to support developers’ quantum
program development, in particular, to develop
learning resources, to help developers fix errors, and
to explain theory behind quantum computing code.

TABLE II
A TAXONOMY OF QUESTION CATEGORIES WHICH BASES ON AND EXTENDS [76]

Category Description Freq
API usage Questions of this category are usually identified by “how to”, i.e., how to use an API or how to implement a functionality. 85
Theoretical∗ This category of questioners ask about theoretical explanations of quantum programs, algorithms, and concepts. 54

Errors This category of questions search for explanations and solutions of errors and exceptions when developing
or executing quantum programs. 49

Conceptual Questions in this category are related to the limitation, background and the underlying concept of an API. 45

Discrepancy Question of this category usually ask for explanations or solutions for unexpected results
(e.g., “what is the problem”, “why not work”. 31

Learning Questions in this category are searching for learning resources such as documentation, research papers, tutorials, or websites. 22

Review This category describes questions like: “How/Why this is working?” or “Is there a better solution?”.
Generally, the questions in this category look for a better solution to a problem or for help reviewing the current solution. 17

Tooling∗ This category describes questions like “I am looking for ...”, “Is there a tool for ...”.
These questions search for tools to solve a specific problem or check the features of a tool. 16

API change This category of questions concern about changes of an API and the associated compatibility issues and other implications. 2
∗Categories newly identified in QSE-related questions.

RQ2: What QSE topics are raised in technical forums?
1) Motivation: Developers post QSE-related questions and

answers on technical forums. Their posts may reflect their
faced challenges when learning or developing quantum pro-
grams. To understand their faced challenges, we use topic
models to extract the semantic topics in their posts and analyze
the characteristics of these topics.

2) Approach: Topic assignment and frequency. The auto-
mated topic modeling generated nine topics and distribution of
co-occurring words in each topic. We then manually assigned
a meaningful label to each topic. Following prior work [61],
[80], [81], to assign a meaningful label to a topic, the first
author first proposed labels using two pieces of information:
(1) the topic’s top 20 keywords, and (2) the top 10-15
most relevant questions associated with the topic. Then, three
authors of the paper reviewed the labels in meetings and
reassigned the labels when needed. We obtained a meaningful
label for each of the nine topics at the end. For each topic, we
measure the percentage of the posts (i.e., frequency) that have
it as the dominant topic (i.e., with the highest probability).
Topic popularity. To understand developers’ attention towards
each topic, following previous work [61], [80], [81], we
measured three metrics for each topic: (1) the median number
of views of the associated posts, (2) the median number of
associated posts marked as favorite, and (3) the median
score of the associated posts. For each topic, the associated
posts refer to the posts that have it as the dominant topic.
Topic difficulty. In order to better understand the most chal-
lenging aspects for developers, we measure the difficulty of
each topic in terms of how difficult it is for the associated posts
to get accepted answers. Following prior work [61], [80], [81],
for each topic, we measure two metrics: (1) the percentage of
the associated questions with no accepted answer, and (2) the
median time required by the associated questions to get an
accepted answer (only considering the ones with an accepted
answer). For each topic, the associated questions refer to the
questions that have the topic as the dominant topic.

3) Results: We derived nine topics that are dis-
cussed in QSE-related posts, including traditional software
engineering topics (e.g., environment management
and dependency management) and QSE-specific top-

ics (e.g., quantum execution results and Quantum
circuits). Table III describes the nine topics and
their frequency in the analyzed posts. Table IV shows
the median views, scores, and favorites of the posts
associated with these topics. The three most dominant
topics are environment management, dependency
management, and algorithm complexity.
Environment management is the most dominant topic

representing 15.03% of posts. For example, the most viewed
question of this topic is “I downloaded the Quipper package
but I have not been able to get haskell to recognize where
all of the modules and files are and how to properly link
everything” which gained 2772 views. Other examples include
“How can I run QCL (quantum programming language) on
Windows?” and “Visualization of Quantum Circuits when
using IBM QISKit”. We can observe that users are new to
quantum computing and facing problem while setting up their
environment and installing their tools. This topic is also linked
to the question category tooling that we derived in RQ1.
Dependency management is the second most discussed

topic representing 14.82% of the posts. For example, the
most viewed question (with 2,239 views) of this topic is
“When trying the above code, I am receiving the following
error: ModuleNotFoundError: No module named qiskit” where
qiskit is an open source framework for quantum program
development [10]. We noticed that a large number of questions
are directly related to qiskit. This can be explained by the
lack of documentation or tutorials in using this framework.
Algorithm complexity is the third most dominant

topic. This topic is about understanding the complexity of
quantum algorithms and how to optimize quantum algorithms.
For example, the most viewed question of this topic is “For
the other algorithms, I was able to find specific equations to
calculate the number of instructions of the algorithm for a
given input size (from which I could calculate the time required
to calculate on a machine with a given speed). However, for
Shor’s algorithm, the most I can find is its complexity: O(
(log N)3)”, which receives 4,718 views. This topic is linked
to the questions category theoretical derived from RQ1.
This topic indicates developers’ challenge in understanding the
complexity of quantum algorithms.

TABLE III
TOPICS EXTRACTED FROM QSE RELATED POSTS ON STACK EXCHANGE FORUMS

Topic (manual label) Keywords Description % Freq
Environment management quot, error, python, build, code Development environment and build problems 15.03
Dependency management qiskit, import, ibmq, operator, provider Library installation, use, and versioning issues 14.82
Algorithm complexity time, problem, algorithm, number, function Quantum algorithm complexity and optimization 14.06

Quantum execution results circuit, result, back-end, simulator, measure Quantum program execution results on quantum
backends (e.g., simulators) 13.22

Learning resources question, paper, work, understand, answer Searching for learning resources such as research
papers and tutorials 9.05

Data structures and operations matrix, return, array, datum, list Data structures (e.g., matrix, arrays and list) and
their operations in quantum programs 8.81

Quantum circuits qubit, gate, control, operation, cirq Elements of quantum circuits (e.g., Qubits, gates)
and their operations 8.66

Quantum vs. classical computing quantum, computer, classical, computing,
algorithm

Comparisons between quantum and classical computing
or migrating classic algorithms to quantum computing 8.30

Quantum algorithms understanding state, rangle, frac, theta, sqrt Quantum algorithm explanation and interpretation 7.51

TABLE IV
POPULARITY OF QSE-RELATED TOPICS ON STACK EXCHANGE FORUMS

Topic name ˜V iew ˜Score ˜Favorite

Quantum vs. classical computing 147.5 3 1.5
Quantum circuits 107.0 2 1.0
Environment management 106.0 1 1.0
Learning resources 102.0 2 1.0
Quantum execution results 98.0 1 1.0
Quantum algorithms understanding 97.5 2 1.0
Dependency management 93.0 2 1.0
Algorithm compolexity 87.5 1 1.0
Data structures and operations 82.0 1 1.0

As quantum programming is oriented to searching solu-
tions in a probabilistic space, which is counter-intuitive
from the classical computing perspective, understand-
ing quantum execution results is particularly chal-
lenging for developers. As a Qubit can be 0 or 1 with a
certain probability, a quantum program that has Qubits as
its basic units can have many different states at the same
time. The results of a quantum program are certain only
when the results are observed (or “measured”). Therefore, it
is more challenging for developers to understand the results
of quantum programs than that of classical programs. For
example “How to plot histogram or Bloch sphere for multiple
circuits? I have tried to plot a histogram for the multiple
circuits for the code given below. I think I have done it
correctly but don’t know why it’s not working. Please help me
out. If possible please solve it for the Bloch sphere” Future
efforts are needed to interpret quantum program outputs.
Posts related to quantum vs. classical computing
are gaining the most attention from developers. Since
quantum computing is based on a new philosophy different
from classical computing, developers often ask questions about
the differences and look to understand the new doors quantum
computing is opening. According to Table IV, posts with this
topic receive the highest median number of views. This may
show that software engineers are eager to contribute to QSE
by starting from the differences between the two paradigms.
However, as shown in Figure 3, posts on this topic are least
likely to receive accepted answers. Our results indicate the
need for resources and tools for bridging the knowledge gap
between quantum computing and classical computing.

Fig. 3. The difficulty aspect of QSE-related topics on Stack Exchange forums

Questions of some topics (e.g., environment
management) are much more difficult than others
to receive accepted answers. According to Figure 3, the
topic environment management is the most difficult
topic to answer, with 61% of posts not receiving an accepted
answer and a median time of 12 hours to receive an
accepted answer. Learning resources, quantum vs.
classical computing and data structures and
operations are also among the most difficult topics
in terms of the ratio of posts getting accepted answers
and the time to get one. The results indicate the lack
of community support in aspects such as setting up a
development environment, searching for learning resources,
and understanding differences between quantum computing
and classical computing, which could impair the advancement
of quantum software development practices.

From Q&A forums, we derived nine topics
discussed in QSE-related posts, including traditional
software engineering topics (e.g., environment
management) and QSE-specific ones (e.g.,
quantum execution results). We highlighted
some particularly challenging areas for QSE, such as
interpreting quantum program outputs and bridging
the knowledge gap between quantum computing and
classical computing.

RQ3: What QSE topics are raised in the issue reports of
quantum-computing projects?

1) Motivation: Issue reports of quantum computing
projects record developers’ concerns and discussions when
adding features or resolving issues in these projects. The
textual information in the issue reports may communicate
developers’ challenges when developing quantum computing
applications. Therefore, we analyze the topics in the issue
reports to understand the challenges developers are facing as
well as the prevalence of these challenges. While the questions
on technical forums can provide information about develop-
ers’ general challenges, the issue reports may communicate
developers’ challenges for specific problems (i.e., issues).

2) Approach: Topic assignment and frequency. Our topic
model on the issue report data generated 17 topics. We follow
the same process as described in RQ2 to manually assign
meaningful labels to the automated topics, based on the top
words in the topics and the content of the associated issue
reports. During the manual assignment process, we found
that some topics are similar to each other even though such
similarity is not detected by the probabilistic topic model.
Therefore, we follow prior work [36], [82] and merged similar
topics. We also discarded one topic as we could not derive a
meaningful label from the top words and the associated issue
reports. In the end, we obtained 13 meaningful topics. For
each topic, we measure the percentage of the issue reports
(i.e., frequency) that have it as the dominant topic (i.e., with
the highest probability). We also measure the number and
percentage of the studied projects that have at least one issue
report of each topic.
Topic difficulty. To further understand developers’ challenges
in developing quantum computing applications, we measure
the “difficulty” of the issue reports associated with each topic.
As we cannot directly measure the “difficulty” of issue reports,
we measure three indirect metrics for each topic: (1) the
percentage of issue reports associated with the topic that is
closed, (2) the median time required to close an issue (since
its creation) associated with the topic, and (3) the median
number of comments in an associated topic (intuitively, an
issue report with more comments may be more difficult [83]).
For each topic, the associated issue reports refer to the issue
reports that have it as the dominant topic.

3) Results: We derived 13 topics from GitHub issue
reports, bringing new perspectives to the challenges
faced by QSE developers. Table V shows the list of
our derived topics, their descriptions, their percentage
frequency in the studied issue reports, and the number of
projects that have at least one issue report of the topic.
Among the 13 topics, 6 of them (learning resources,
environment management, quantum circuits,
quantum execution results, data structures
and operations, and dependency management) are
overlapping with the topics derived from Stack Exchange
posts (RQ2), and another 2 of them (API change and
API usage) are overlapping with the categories of Stack

Exchange questions derived in RQ1. This result indicates
that the QSE-related challenges that we derived from forum
posts indeed impact practical quantum program development
in GitHub projects.

Among the other five topics, two of them (i.e., machine
learning and quantum chemistry) are related to
the most popular and promising quantum computing appli-
cation areas: machine learning and chemistry. For exam-
ple, an issue report associated with quantum chemistry
raises an issue when using a molecular optimizer Python
library: “it leads to PyBerny optimizing an unconverged
ground state energy, which generally leads to the geome-
try optimization never converging”. The other three topics
(i.e., quantum execution errors, unit testing,
algorithm optimization) are related to applications of
traditional software engineering processes in quantum program
development.

All derived topics are general among the quantum com-
puting projects, as each topic is present in the issue reports
of 58% to 90% of the projects. We observe that learning
resources and environment management are the two
most frequent topics and appear in 90% and 88% of all the
studied projects, respectively, which once again highlights
the need of efforts for developing learning resources and
supporting developers in setting up their quantum program
development environment.

Some topics are particularly challenging for developers,
such as data structures and operations,
quantum circuits, and quantum execution
results. Table VI shows the median time it takes to close
an issue report and the number of comments in an issue
report associated with each topic. All the issues are closed at
the time when we analyzed their status. The issues associated
with each topic only have a median of one to two comments,
indicating that developers’ interactions on these issue reports
are not intense. Data structures and operations
is also among the most difficult topics on forum posts (as
discussed in RQ2). However, the Quantum circuits and
quantum execution results topics are not among
the most difficult topics on forum posts, while they are two
of the most difficult ones on GitHub issues, which indicates
that quantum circuit issues and the interpretation of quantum
program execution results are more difficult in specific
problem contexts.

QSE-related challenges that we derived from forum
posts indeed impact practical quantum program devel-
opment in GitHub projects, while GitHub issues bring
new perspectives on developers’ faced challenges (e.g.,
on specific quantum computing applications such as
machine learning). In particular, we observe that the
challenges are generally among the quantum comput-
ing projects.

TABLE V
QSE-RELATED TOPICS DERIVED FROM ISSUE REPORTS OF QUANTUM COMPUTING PROJECTS ON GITHUB

Manual label Keywords Description % Freq # Projects

Learning resources summary, remove, tutorial, link, documentation Search for documentation, tutorials, websites, etc. 14.94 109 (90.08%)

Environment management build, include, library, release, variable Development environment and build problems 13.72 107 (88.43%)

API change version, qiskit, code, issue, update API update or deprecation issues 11.65 98 (80.99%)

Quantum circuits gate, circuit, qubit, operation, control Elements of quantum circuits (e.g., Qubits, gates)
and their operations 8.30 70 (57.85%)

Quantum chemistry input, calculation, basis, energy, pyscf Issues with quantum chemistry libraries (e.g., PySCF) 6.72 76 (62.80%)

Quantum execution errors error, artiq, follow, experiment, device Errors in the execution of quantum programs 6.38 80 (66.12%)

Unit testing test, check, fail, unit, script Unit testing failures 6.32 87 (71.90%)

API usage function, method, class, parameter, call How to use an API 5.81 80 (66.11%)

Quantum execution results state, number, result, time, measurement Quantum program execution results (i.e., measured state) 5.76 89 (73.55%)

Data structures and operations implement, operator, matrix, problem, array Data structures (e.g., matrix, arrays and list)
and their operations 5.73 88 (72.73%)

Machine learning model, datum, dataset, layer, benchmark Quantum computing application in machine learning 5.26 75 (61.9%)

Dependency management file, python, import, package, install Library installation, use and versioning issues 5.23 93 (76.86%)

Algorithm optimization case, time, optimization, long, performance Program performance and algorithm optimization 4.19 83 (68.6%)

TABLE VI
THE DIFFICULTY ASPECT OF QSE-RELATED TOPICS ON GITHUB ISSUES

Topic name ˜Hr to close ˜# comments

Data structures and operations 151.40 1
Quantum circuits 114.98 1
Quantum execution results 98.02 1
Machine learning 94.68 2
API usage 80.70 1
Quantum chemistry 62.89 2
Quantum execution errors 59.44 2
API change 47.34 1
Algorithm optimization 39.83 1
Dependency management 32.40 2
Unit testing 28.26 1
Learning resources 27.02 1
Environment management 21.57 1
All the issues are closed at the time we analyzed their status.

V. THREATS TO VALIDITY

External validity. In this work, we analyze four Stack Ex-
change forums and 122 GitHub repositories to understand the
challenges of QSE. Our studied forum posts and GitHub issues
may not cover all the ones that are related to QSE. Developers
may also communicate their discussions in other media (e.g.,
mailing lists). Future work considering other data sources may
complement our study. In addition, we identify and collect
the posts from Q&A forums using a selected set of tags. Our
analysis may miss some QSE tags. However, to alleviate this
threat, we follow prior work [60], [61] and use an iterative
method to identify the relevant tags.
Internal validity. In this work, we use topic models to
cluster the forum posts and GitHub issue reports, based on
the intuition that the same clusters would have similar textual
information. However, different clusters of posts and issue
reports may exist when a different approach is used. To ensure
the quality of the clusters, we manually reviewed the resulting
topics, merged similar topics when needed, and assigned
meaningful labels to them.
Construct validity. In RQ1, we manually analyze the cate-
gories of QSE-related questions on technical Q&A forums.
Our results may be subjective and depend on the judgment of

the researchers who conducted the manual analysis. To miti-
gate the bias, two authors of the paper collectively conducted
an manual analysis and reached a substantial agreement,
indicating the reliability of the analysis results. A third author
also participated in the discussions during the manual analysis,
to ensure the quality of the results. In RQ2 and RQ3, the
parameters of the topic models (e.g., the number of topics K)
may impact our findings. To mitigate this threat, following
previous work [60] [61], we did multiple experiments and
use the topic coherence score to select the most suitable
parameters. The manual labeling of topics can be subjective.
To reduce this threat, the authors read each topic’s top 20
keywords and the top 15 highest contributed posts to the
topic. We followed a clear-cut approach adapted in previous
works [60] [61]. In addition, in our analysis of the QSE posts,
we did not filter posts using the number of comments, votes or
answers (as done in prior work [84]), which may lead to noise
in the analyzed posts (e.g., low-quality posts). We made this
decision since QSE is a new topic and the number of posts in
the Q&A forums is relatively small.

VI. CONCLUSIONS

This paper examines challenges quantum program devel-
opers are facing by analyzing Stack Exchange forums posts
related to QSE and the GitHub issue reports of quantum
computing projects. Results indicate that QSE developers face
traditional software engineering challenges (e.g., dependency
management) as well as QSE-specific challenges (e.g., in-
terpreting quantum program execution results). In particular,
some QSE-related areas (e.g., bridging the knowledge gap
between quantum and classical computing) are gaining the
highest attention from developers while being very challenging
to them. As the initial effort for understanding QSE-related
challenges perceived by developers, our work shed light on
future opportunities in QSE (e.g., supporting explanations of
theory behind quantum program code and the interpretations
of quantum program execution results).

REFERENCES

[1] W. Knight, “Serious quantum computers are finally here. what are we
going to do with them,” MIT Technology Review, vol. 30, 2018.

[2] D. Maslov, Y. Nam, and J. Kim, “An outlook for quantum computing
[point of view],” Proceedings of the IEEE, vol. 107, no. 1, pp. 5–10,
2018.

[3] J. Zhao, “Quantum software engineering: Landscapes and horizons,”
arXiv preprint arXiv:2007.07047, 2020.

[4] IBM, “IBM Quantum Computing,” https://www.ibm.com/quantum-
computing/, Last accessed 05/04/2021.

[5] P. A. M. Dirac, The principles of quantum mechanics. Oxford university
press, 1981, no. 27.

[6] E. Schrödinger, “Discussion of probability relations between separated
systems,” in Mathematical Proceedings of the Cambridge Philosophical
Society, vol. 31, no. 4. Cambridge University Press, 1935, pp. 555–563.

[7] L. Mueck, “Quantum software,” Nature, vol. 549, no. 171, 2017.
[8] M. Piattini, G. Peterssen, R. Pérez-Castillo, J. L. Hevia, M. A. Serrano,

G. Hernández, I. G. R. de Guzmán, C. A. Paradela, M. Polo, E. Murina
et al., “The talavera manifesto for quantum software engineering and
programming.” in The First International Workshop on the Quantum
Software Engineering & Programming, ser. QANSWER ’20, 2020, pp.
1–5.

[9] B. Ömer, “Qcl-a programming language for quantum computers,” Soft-
ware available on-line at http://tph. tuwien. ac. at/˜ oemer/qcl. html,
2003.

[10] H. Abraham, AduOffei, R. Agarwal, I. Y. Akhalwaya, and et al., “Qiskit:
An open-source framework for quantum computing,” 2019.

[11] Google, “Google QuantumAI,” https://quantumai.google, Last accessed
05/04/2021.

[12] Microsoft, “Microsoft Azure Quantum Service,”
https://azure.microsoft.com/en-ca/services/quantum/, Last accessed
05/04/2021.

[13] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and
S. Lloyd, “Quantum machine learning,” Nature, vol. 549, no. 7671, pp.
195–202, 2017.

[14] G. G. Guerreschi and M. Smelyanskiy, “Practical optimization for hybrid
quantum-classical algorithms,” arXiv preprint arXiv:1701.01450, 2017.

[15] L. O. Mailloux, C. D. Lewis II, C. Riggs, and M. R. Grimaila, “Post-
quantum cryptography: what advancements in quantum computing mean
for it professionals,” IT Professional, vol. 18, no. 5, pp. 42–47, 2016.

[16] M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and M. Troyer, “Eluci-
dating reaction mechanisms on quantum computers,” Proceedings of the
National Academy of Sciences, vol. 114, no. 29, pp. 7555–7560, 2017.

[17] M. Piattini, G. Peterssen, and R. Pérez-Castillo, “Quantum computing:
A new software engineering golden age,” ACM SIGSOFT Software
Engineering Notes, vol. 45, no. 3, pp. 12–14, 2020.

[18] E. Moguel, J. Berrocal, J. Garcı́a-Alonso, and J. M. Murillo, “A roadmap
for quantum software engineering: applying the lessons learned from the
classics,” in Proceedings of the 1st International Workshop on Software
Engineering ++& Technology, ser. Q-SET ’20, 2020.

[19] L. S. Barbosa, “Software engineering for’quantum advantage’,” in Pro-
ceedings of the IEEE/ACM 42nd International Conference on Software
Engineering Workshops, 2020, pp. 427–429.

[20] M. Piattini, M. Serrano, R. Perez-Castillo, G. Petersen, and J. L. Hevia,
“Toward a quantum software engineering,” IT Professional, vol. 23,
no. 1, pp. 62–66, 2021.

[21] S. Beyer, C. Macho, M. D. Penta, and M. Pinzger, “What kind of
questions do developers ask on stack overflow? a comparison of auto-
mated approaches to classify posts into question categories,” in Software
Engineering, 2021.

[22] P. Kaye, R. Laflamme, M. Mosca et al., An introduction to quantum
computing. Oxford University Press on Demand, 2007.

[23] B. Sodhi, “Quality attributes on quantum computing plat-
forms,” CoRR, vol. abs/1803.07407, 2018. [Online]. Available:
http://arxiv.org/abs/1803.07407

[24] S. Garhwal, M. Ghorani, and A. Ahmad, “Quantum programming lan-
guage: A systematic review of research topic and top cited languages,”
Archives of Computational Methods in Engineering, pp. 1–22, 2019.

[25] D. Deutsch and R. Penrose, “Quantum theory, the church–turing
principle and the universal quantum computer,” Proceedings of
the Royal Society of London. A. Mathematical and Physical
Sciences, vol. 400, no. 1818, pp. 97–117, 1985. [Online]. Available:
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1985.0070

[26] E. Knill, “Conventions for quantum pseudocode,” 6 1996. [Online].
Available: https://www.osti.gov/biblio/366453

[27] J. W. Sanders and P. Zuliani, “Quantum programming,” in Mathematics
of Program Construction, ser. Lecture Notes in Computer Science, vol.
1837. Springer, 2000, pp. 80–99.

[28] H. MLNAŘÍK, “Semantics of quantum programming lan-
guage lanq,” International Journal of Quantum Information,
vol. 06, no. supp01, pp. 733–738, 2008. [Online]. Available:
https://doi.org/10.1142/S0219749908004031

[29] K. Svore, A. Geller, M. Troyer, J. Azariah, C. Granade, B. Heim,
V. Kliuchnikov, M. Mykhailova, A. Paz, and M. Roetteler, “Q#:
Enabling scalable quantum computing and development with a
high-level dsl,” in Proceedings of the Real World Domain Specific
Languages Workshop 2018, ser. RWDSL2018. New York, NY, USA:
Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3183895.3183901

[30] R. LaRose, “Overview and comparison of gate level quantum software
platforms,” Quantum, vol. 3, p. 130, 2019.

[31] B. Vasilescu, “Academic papers using stack exchange data,”
https://meta.stackexchange.com/questions/134495/academic-papers-
using-stack-exchange-data, Last accessed 05/04/2021.

[32] S. Wang, D. Lo, and L. Jiang, “An empirical study on developer
interactions in stackoverflow,” in Proceedings of the 28th Annual ACM
Symposium on Applied Computing, 2013, pp. 1019–1024.

[33] H. Chen, J. Coogle, and K. Damevski, “Modeling stack overflow tags
and topics as a hierarchy of concepts,” Journal of Systems and Software,
vol. 156, pp. 283–299, 2019.

[34] M. Allamanis and C. Sutton, “Why, when, and what: analyzing stack
overflow questions by topic, type, and code,” in 2013 10th Working
Conference on Mining Software Repositories (MSR). IEEE, 2013, pp.
53–56.

[35] M. Linares-Vásquez, B. Dit, and D. Poshyvanyk, “An exploratory anal-
ysis of mobile development issues using stack overflow,” in 2013 10th
Working Conference on Mining Software Repositories (MSR). IEEE,
2013, pp. 93–96.

[36] C. Rosen and E. Shihab, “What are mobile developers asking about? a
large scale study using stack overflow,” Empirical Software Engineering,
vol. 21, no. 3, pp. 1192–1223, 2016.

[37] P. K. Venkatesh, S. Wang, F. Zhang, Y. Zou, and A. E. Hassan, “What
do client developers concern when using web apis? an empirical study
on developer forums and stack overflow,” in 2016 IEEE International
Conference on Web Services (ICWS). IEEE, 2016, pp. 131–138.

[38] M. Alshangiti, H. Sapkota, P. K. Murukannaiah, X. Liu, and Q. Yu,
“Why is developing machine learning applications challenging? a study
on stack overflow posts,” in 2019 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM). IEEE,
2019, pp. 1–11.

[39] S. Ahmed and M. Bagherzadeh, “What do concurrency developers ask
about? a large-scale study using stack overflow,” in Proceedings of
the 12th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, 2018, pp. 1–10.

[40] X.-L. Yang, D. Lo, X. Xia, Z.-Y. Wan, and J.-L. Sun, “What security
questions do developers ask? a large-scale study of stack overflow posts,”
Journal of Computer Science and Technology, vol. 31, no. 5, pp. 910–
924, 2016.

[41] J. Zou, L. Xu, M. Yang, X. Zhang, and D. Yang, “Towards compre-
hending the non-functional requirements through developers’ eyes: An
exploration of stack overflow using topic analysis,” Information and
Software Technology, vol. 84, pp. 19–32, 2017.

[42] J. Zou, L. Xu, W. Guo, M. Yan, D. Yang, and X. Zhang, “Which non-
functional requirements do developers focus on? an empirical study on
stack overflow using topic analysis,” in 2015 IEEE/ACM 12th Working
Conference on Mining Software Repositories. IEEE, 2015, pp. 446–449.

[43] Y. Zhang, D. Lo, X. Xia, and J.-L. Sun, “Multi-factor duplicate question
detection in stack overflow,” Journal of Computer Science and Technol-
ogy, vol. 30, no. 5, pp. 981–997, 2015.

[44] C. Treude and M. Wagner, “Predicting good configurations for github
and stack overflow topic models,” in 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR). IEEE, 2019, pp.
84–95.

[45] T. Zhang, G. Yang, B. Lee, and E. K. Lua, “A novel developer ranking
algorithm for automatic bug triage using topic model and developer
relations,” in 2014 21st Asia-Pacific Software Engineering Conference,
vol. 1. IEEE, 2014, pp. 223–230.

[46] X. Xia, D. Lo, X. Wang, and B. Zhou, “Accurate developer recommen-
dation for bug resolution,” in 2013 20th Working Conference on Reverse
Engineering (WCRE). IEEE, 2013, pp. 72–81.

[47] H. Naguib, N. Narayan, B. Brügge, and D. Helal, “Bug report assignee
recommendation using activity profiles,” in 2013 10th Working Confer-
ence on Mining Software Repositories (MSR). IEEE, 2013, pp. 22–30.

[48] X. Xia, D. Lo, Y. Ding, J. M. Al-Kofahi, T. N. Nguyen, and X. Wang,
“Improving automated bug triaging with specialized topic model,” IEEE
Transactions on Software Engineering, vol. 43, no. 3, pp. 272–297, 2016.

[49] A. Hindle, A. Alipour, and E. Stroulia, “A contextual approach towards
more accurate duplicate bug report detection and ranking,” Empirical
Software Engineering, vol. 21, no. 2, pp. 368–410, 2016.

[50] A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, and C. Sun,
“Duplicate bug report detection with a combination of information re-
trieval and topic modeling,” in 2012 Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering. IEEE,
2012, pp. 70–79.

[51] J. Zou, L. Xu, M. Yang, M. Yan, D. Yang, and X. Zhang, “Duplication
detection for software bug reports based on topic model,” in 2016 9th
International Conference on Service Science (ICSS). IEEE, 2016, pp.
60–65.

[52] A. T. Nguyen, T. T. Nguyen, J. Al-Kofahi, H. V. Nguyen, and T. N.
Nguyen, “A topic-based approach for narrowing the search space of
buggy files from a bug report,” in 2011 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2011). IEEE,
2011, pp. 263–272.

[53] L. Martie, V. K. Palepu, H. Sajnani, and C. Lopes, “Trendy bugs: Topic
trends in the android bug reports,” in 2012 9th IEEE Working Conference
on Mining Software Repositories (MSR). IEEE, 2012, pp. 120–123.

[54] A. Aggarwal, G. Waghmare, and A. Sureka, “Mining issue tracking
systems using topic models for trend analysis, corpus exploration,
and understanding evolution,” in Proceedings of the 3rd International
Workshop on Realizing Artificial Intelligence Synergies in Software
Engineering, 2014, pp. 52–58.

[55] “Stack Overflow forum,” https://stackoverflow.com, Last accessed
05/04/2021.

[56] “Stack Exchange Quantum Computing forum,”
https://quantumcomputing.stackexchange.com, Last accessed
05/04/2021.

[57] “Stack Exchange Computer Science forum,”
https://cs.stackexchange.com, Last accessed 05/04/2021.

[58] “Stack Exchange Artificial Intelligence forum,”
https://ai.stackexchange.com, Last accessed 05/04/2021.

[59] “stack exchange data explorer.”
[60] G. Uddin, O. Baysal, L. Guerrouj, and F. Khomh, “Understanding how

and why developers seek and analyze api-related opinions,” 2021.
[61] M. Openja, B. Adams, and F. Khomh, “Analysis of modern release

engineering topics : – a large-scale study using stackoverflow –,” in 2020
IEEE International Conference on Software Maintenance and Evolution
(ICSME), 2020, pp. 104–114.

[62] B. Cartaxo, G. Pinto, D. Ribeiro, F. K. Kamei, R. Santos, F. Silva, and
S. Soares, “Using q&a websites as a method for assessing systematic
reviews,” 05 2017.

[63] J. Businge, M. Openja, S. Nadi, E. Bainomugisha, and T. Berger,
“Clone-based variability management in the android ecosystem,” 2018
IEEE International Conference on Software Maintenance and Evolution
(ICSME), pp. 625–634, 2018.

[64] J. Businge, M. Openja, D. Kavaler, E. Bainomugisha, F. Khomh, and
V. Filkov, “Studying android app popularity by cross-linking github
and google play store,” 2019 IEEE 26th International Conference on
Software Analysis, Evolution and Reengineering (SANER), pp. 287–297,
2019.

[65] “GitHub REST API,” https://developer.github.com/v3/, Last accessed
05/04/2021.

[66] P. Willett, “The porter stemming algorithm: Then and now,” Program
electronic library and information systems, vol. 40, 07 2006.

[67] V. Gurusamy and S. Kannan, “Performance analysis: Stemming algo-
rithm for the english language,” International Journal for Scientific
Research and Development, vol. 5, pp. 2321–613, 08 2017.

[68] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
the Journal of machine Learning research, vol. 3, pp. 993–1022, 2003.

[69] T.-H. Chen, S. W. Thomas, and A. E. Hassan, “A survey on the use of
topic models when mining software repositories,” Empirical Software
Engineering, vol. 21, no. 5, pp. 1843–1919, 2016.

[70] A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers talking
about? an analysis of topics and trends in stack overflow,” Empirical
Software Engineering, vol. 19, no. 3, pp. 619–654, 2014.

[71] R. Rossi and S. Rezende, “Generating features from textual documents
through association rules,” 01 2011.

[72] A. K. McCallum, “Mallet: A machine learning for language toolkit,”
2002, http://mallet.cs.umass.edu.

[73] M. Röder, A. Both, and A. Hinneburg, “Exploring the space of topic
coherence measures,” Proceedings of the Eighth ACM International
Conference on Web Search and Data Mining, 2015.

[74] “Gensim coherencemodel implimentation,”
https://radimrehurek.com/gensim/models/coherencemodel.html, Last
accessed 05/04/2021.

[75] J. Han, E. Shihab, Z. Wan, S. Deng, and X. Xia, “What do programmers
discuss about deep learning frameworks,” Empirical Software Engineer-
ing, vol. 25, pp. 2694–2747, 2020.

[76] S. Beyer, C. Macho, M. Di Penta, and M. Pinzger, “What kind of
questions do developers ask on stack overflow? a comparison of auto-
mated approaches to classify posts into question categories,” Empirical
Software Engineering, vol. 25, no. 3, pp. 2258–2301, 2020.

[77] H. Li, W. Shang, B. Adams, M. Sayagh, and A. E. Hassan, “A qualitative
study of the benefits and costs of logging from developers’ perspectives,”
IEEE Transactions on Software Engineering, 2020.

[78] M. McHugh, “Interrater reliability: The kappa statistic,” Biochemia
medica : časopis Hrvatskoga društva medicinskih biokemičara / HDMB,
vol. 22, pp. 276–82, 10 2012.

[79] “Cirq,” Mar. 2021, See full list of authors on Github:
https://github .com/quantumlib/Cirq/graphs/contributors. [Online].
Available: https://doi.org/10.5281/zenodo.4586899

[80] X.-L. Yang, D. Lo, X. Xia, Z. Wan, and J.-L. Sun, “What security
questions do developers ask? a large-scale study of stack overflow posts,”
Journal of Computer Science and Technology, vol. 31, pp. 910–924, 09
2016.

[81] M. Bagherzadeh and R. Khatchadourian, “Going big: A large-
scale study on what big data developers ask,” in Proceedings
of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, ser. ESEC/FSE 2019. New York, NY, USA:
Association for Computing Machinery, 2019, p. 432–442. [Online].
Available: https://doi.org/10.1145/3338906.3338939

[82] E. Noei, F. Zhang, and Y. Zou, “Too many user-reviews, what should app
developers look at first?” IEEE Transactions on Software Engineering,
2019.

[83] F. Khomh, B. Chan, Y. Zou, and A. E. Hassan, “An entropy evaluation
approach for triaging field crashes: A case study of mozilla firefox,”
in 2011 18th Working Conference on Reverse Engineering, 2011, pp.
261–270.

[84] E. Farhana, N. Imtiaz, and A. Rahman, “Synthesizing program execu-
tion time discrepancies in julia used for scientific software,” in 2019
IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2019, pp. 496–500.

