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An Empirical Study of Refactoring Rhythms and
Tactics in the Software Development Process
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Abstract—It is critical for developers to develop high-quality software to reduce maintenance cost. While often, developers apply
refactoring practices to make source code readable and maintainable without impacting the software functionality. Existing studies
identify development rhythms (i.e., weekly development patterns) and their relationship with various metrics, such as productivity.
However, existing studies focus entirely on development rhythms. There is no study on refactoring rhythms and their relationship with
code quality. Moreover, the existing studies categorize the refactoring tactics (i.e., long-term refactoring patterns) into two general
concepts of consistent and inconsistent refactoring. Nevertheless, the existence of other tactics and their relationship with code quality
is not explored. In this paper, we conduct an empirical study on the refactoring practices of 196 Apache projects in the early, middle,
and late stages of development. We aim to identify (1) existing refactoring rhythms, (2) further refactoring tactics, and (3) the
relationship between the identified tactics and rhythms with code quality. The recognition of existing refactoring strategies and their
relationship with code quality can assist practitioners in recognizing and applying the appropriate and high-quality refactoring rhythms
or tactics to deliver a higher quality of software. We find two frequently used refactoring rhythms: work-day refactoring and all-day
refactoring. We also identify two deviations of floss and root canal refactoring tactics as: intermittent root canal, intermittent spiked
floss, frequent spiked floss, and frequent root canal. We find that root canal-based tactics are correlated with less increase in the code
smells (i.e., higher quality code) compared to floss-based tactics. Moreover, we find that refactoring rhythms are not significantly
correlated with the quality of the code. Furthermore, we provide detailed information on the relationship of each refactoring tactic to
each code smell type.

Index Terms—Refactoring, Code Quality, Code Smells, Refactoring Rhythms, Refactoring Tactics.
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1 INTRODUCTION

R EFACTORING is a systematic process of improving
the internal quality of software without affecting its

functionalities [1]. Many studies show that refactoring is
a widely engaged part of the software maintenance pro-
cess [2], [3], [4], [5]. Refactoring facilitates the extensibility
and maintainability of a software system [6], [7], [8]. Various
reasons drive developers’ refactoring activities, such as im-
proving software design [9], making software systems easier
to understand [10], enhancing reusability [11], removing
dependencies among attributes, methods, classes, interfaces,
and packages [12], as well as eliminating code smells [12],
[13], [14], [15], [16], [17]. A code smell is a design flaw that
violates the principles of design standards and impairs the
maintainability of software [18], [19]. As a result, a code
smell can affect the internal quality of software. For instance,
a broken hierarchy code smell happens when a subtype and
its supertype do not share an “IS-A” relationship [20]. The
presence of code smells is a good indicator for code quality
checks [18], and multiple refactoring operations are typically
needed to eliminate code smells [17].

Several factors contribute to the quantity of refactoring
operations performed to improve code quality, such as de-
veloper perceptions, team experience, development sched-
ule, software characteristics, and so forth [21]. Different
teams may apply different refactoring strategies in short-
term or long-term periods [22], [23]. Identifying patterns in
refactoring practices and their relationship with code quality
can help software developers adopt the most suitable pat-
terns in their projects. More specifically refactoring patterns
have two perspectives: (1) refactoring rhythms and (2) refac-
toring tactics. Refactoring rhythms describe how refactoring

operations split across the weekdays and usually focus on
existing tasks. Refactoring tactics are referred to as long-
term refactoring more focused on future development [24].

In the context of refactoring rhythms, existing studies
focus on development rhythms and categorize development
rhythms as work-day (i.e., Monday to Friday) development
and all-day development. Moreover, they correlate develop-
ment rhythms with the measures, such as task performance
and productivity [25], [26], [27]. However, to the best of our
knowledge, no study has investigated the identification of
refactoring rhythms and their relationship with code quality.

In terms of refactoring tactics, existing studies divide
refactoring tactics into floss and root canal [1], [28], [29]. Floss
refactoring is distinguished by frequent refactoring along
with the development process. Root canal refactoring is iden-
tified by occasional refactoring aside from the development
process. While the terms floss and root canal are widely used
as refactoring tactics, the existence of other possible tactics
and their relationship with code quality is not explored in
the existing work.

In this work, we study developers’ refactoring activities
(rhythms and tactics) and their impact on code quality in
terms of code smells. To identify refactoring rhythms and
other possible refactoring tactics, we study 196 Apache
projects and introduce two metrics: daily refactoring den-
sity (DRD) and weekly refactoring density (WRD). Using
the introduced metrics, we divide each project into daily
and weekly time frames to identify frequent refactoring
tactics and rhythms during the lifetime of a project. Then,
we investigate the relationship between different rhythms
and tactics with code quality. Such information can guide
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developers in selecting the most suitable and high-quality
refactoring rhythms or tactics for their projects. To this end,
we aim to answer the following research questions:

RQ1. What are the rhythms of refactoring?— To identify
existing refactoring rhythms, we analyze if the refactoring
rhythms fit into the software development rhythms intro-
duced by previous studies (work-day and all-day). By utiliz-
ing the DRD metric and performing Kruskal-Wallis test [30],
we observe that the majority of projects (95%) apply two
primary rhythms: (1) work-day refactoring (11%) and (2)
all-day refactoring (84%).

RQ2: What are the most frequent refactoring tactics
used in projects?— To identify refactoring tactics, we uti-
lize the WRD metric and form a time series of refactoring
activities for every project. Using dynamic time warping
(DTW), we cluster refactoring time series and we observe
four variations of floss and root canal refactoring tactics:

• Intermittent spiked floss: Regular and consistent
refactoring with fewer sudden increases (spikes)
compared to frequent spiked floss.

• Frequent spiked floss: Consistent refactoring but
with more spikes in refactoring density compared to
intermittent spiked floss.

• Intermittent root canal: Once in a while refactoring
in high densities, but with most weeks having no
refactoring densities.

• Frequent root canal: More frequent refactoring with
more spikes in refactoring density compared to in-
termittent root canal with most weeks having no
refactoring activities.

RQ3: What is the relationship of different refactoring
rhythms and tactics with code quality?— In the two first
research questions, we identify frequently used refactor-
ing rhythms and tactics. Furthermore, we are interested
in understanding how different rhythms and tactics are
associated with code quality improvement (i.e., reducing
code smells). To examine the relationship between refac-
toring rhythms with code quality metrics, we use a Scott-
Knott-ESD [31], [32] test to rank and cluster code smell
changes after adopting each refactoring rhythm and tactic.
We observe that root canal-based tactics are more targeted
refactoring operations, therefore, are correlated with more
reduction of code smells compared to floss-based tactics
and deliver higher quality code. Furthermore, we observe
that refactoring rhythms are not significantly correlated with
software quality. Consequently, refactoring rhythms are cho-
sen based on the project assets and the development team’s
comforts. Finally, we provide some guidelines on positive
and negative relationships between different refactoring
tactics and different types of code smells.
In conclusion, we make the following contributions:

1) We identify refactoring rhythms and tactics that are
used in the software development process, which
can provide insights for practitioners to understand
existing refactoring practices and develop tooling to
support such practices.

2) We understand the relationship between the used
tactics and rhythms with software quality, which
helps developers to adopt the most suitable ap-
proach.

The replication package can be accessed online [33].
Paper organization. The remainder of our study is orga-
nized as follows. Section 2 describes the setup of this study.
Section 3 presents our approaches and results for answering
our research questions. Section 4 discusses the threats to
the validity of our findings and Section 5 provides the
implications of out study. Section 6 surveys related studies
and compares them to our work. Finally, we conclude our
paper and present future research directions in Section 7,
and acknowledge contributions in Section 8.

2 EXPERIMENT SETUP

This section presents the setup of our study, including our
data collection and data analysis approaches.

2.1 Overview of Our Approach
Figure 1 gives an overview of our study. We conduct our
research using the projects with a reasonable amount of de-
velopment activities from the 20-MAD Apache dataset [34].
We extract the refactoring history of these projects and
calculate refactoring density metrics along with their lifes-
pan. By utilizing refactoring density metrics, we compare
refactoring distributions at different time periods to answer
the first and the second research questions that aim to
identify refactoring rhythms and tactics. Furthermore, we
use the characteristics of the projects and developers to pro-
vide insights into the rationale of using such rhythms and
tactics. Finally, by measuring quality changes after adopting
each rhythm and tactic, we identify the relationship of the
identified rhythms and tactics with the quality of code.

2.2 Data Collection
To perform our experiments, we perform several steps to
collect our dataset.

2.2.1 Project Selection and Pre-processing
The 20-MAD Apache dataset [34] contains information about
commits and issues related to 765 Mozilla and Apache
projects with a timespan of 20 years. In particular, the
dataset contains 3.4M commits, 2.3M issues, and 17.3M issue
comments. Considering that Java is one the most popular
programming languages [35], [36] and it is best supported
by refactoring extraction tools (e.g., Rminer [14]), we limit
our study to Java projects. To select projects with enough
data that help identify the different refactoring tactics and
rhythms, we exclude the projects that:

• have less than 80% of Java source code;
• have less than the 1st quantile of commit counts (i.e.,

< 1,021 commits); and
• have a short lifespan (i.e., < one-year of commit

history).

As a result, we obtain 196 Java projects that have sufficient
commit history and lifespan for our analysis.

The studied projects in our dataset have varying lifes-
pans and therefore, possess different development histories.
Furthermore, refactoring habits or requirements may change
over time. For example, as a project ages, design issues may
be fixed less frequently [37]. Hence, we cannot compare
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Fig. 1: An overview of our study.

refactoring practices unless we have projects with a similar
lifetime. To be able to analyze the refactoring activities in the
projects, we partition longer projects into multiple stages.
We utilized the first, second, and third quartiles of project
ages to establish thresholds and divided all projects into four
age groups, with each group containing an equal number
of projects. The age groups are categorized as follows: (1)
younger than 4.5 years (i.e., the first quartile), (2) between 4.5
(first quartile) and 7 years (second quartile), (3) between 7
(second quartile) and 8.5 years (third quartile), and (4) older
than 8.5 years (third quartile) of activities. We excluded
projects with less than 4.5 years of activities from our study
because such projects have a wide variety of ages, making it
difficult to compare similar activities among them, unless
they have a similar lifespan. By using the identified age
groups, we define different stages of software development:
(1) early stage: start of a project until the 4.5th year, (2)
middle stage: 4.5th year of a project until the 7th year, and
(3) late stage: 7th year of a project until the 8.5th year which
is the longest age considered in all studied projects. As a
result, we observe that 50 projects have ages between 4.5
and 7 years, 49 projects have ages between 7 to 8.5 years,
and 50 projects have ages of more than 8.5 years. To compare
the old projects (e.g., 10 years old) with young ones (e.g., 5
years old), we divide the older projects into two or three
stages using the thresholds of the age groups. For instance,
if a project has 6 years of activities, it has only the early stage
of development (e.g., the first 4.5 years of activities), while a
project with 10 years of activities has the early, middle, and
late stages of development. Doing so allows us to identify
similar rhythms and tactics that might appear among the
projects at different stages. We use these three development
stages throughout the analyses performed in this study.

2.2.2 Refactoring Extraction

To extract the refactoring operations, we use the Rminer
2.0.3 tool [14], which is an AST-based algorithm that finds
up to 59 Java refactoring types from the commit history
without the need for user-defined thresholds [14], [38].
Furthermore, Rminer is a superior refactoring detection
tool compared to its opponents and identifies refactoring
operations with an overall precision of 99.7% and a recall
of 94.2% [14]. To measure the accuracy of the tool on our
dataset, with a confidence level of 95% and a margin of
error of 5% on the total number of commits, we select 385
commits to perform our manual validation. In each commit,
we reviewed all types of refactorings that the tool could

identify and determined if and how many of them were
present in the results of the tool. We then compared our
results with the tool’s results. For example, if we identified
a pull-up method but the tool did not, we marked it as a
tool failure and vice versa. The manual validation is done
by one of the authors and one undergraduate computer
science student. The results of the manual validation show
an overall precision of 97%, recall of 96%, and F1 score of
95% respectively. Furthermore, we calculate Cohen’s kappa
coefficient [39] from the participant’s manual validation
results and achieve a score of 0.91, which suggests a strong
agreement. Therefore, we run Rminer on every selected
project for each commit to extract refactoring activities in
the history of development.

2.2.3 Code Smells Extraction

To identify the relationship between the refactoring rhythms
or tactics and code quality, we need to analyze how these
refactoring patterns reduce or increase the frequency of code
smells. As we use code smells as code quality indicators, we
analyze how refactoring rhythms and tactics are associated
with the reduction or increase in the frequency of code
smells.

We use the Designite tool [40] to extract code smells.
Designite can identify the most types of code smells com-
pared to its alternatives and detects numerous code smells
in large codebases [40], [41]. For instance, Arcan [42] and
Hotspot detector [43] can detect only 4 types of code smells.
Similarly, Jdeodorant [44] detects 5 and Arcade [45] detects
11 types of code smells. Designite can identify 35 code smell
types including 7 architecture smells, 18 design smells, and
10 implementation smells as listed in Table 1. The different
categories of code smells have specific causes and impacts
on the software system. Architecture code smells arise from
poor software designs within the system architecture and
can negatively impact system quality, performance, and
lifespan [46]. Design code smells result from inadequate sys-
tem design and have a negative impact on code quality [19].
Implementation code smells, on the other hand, stem from
poor implementation decisions made by contributors and
can negatively affect the quality of the code [1]. To address
all three types of code smells, refactoring has been shown
to be an effective solution [1], [19], [46], [47]. Being able to
identify the various types of code smells allows us to study
the impact of different refactoring strategies and techniques
in a more comprehensive manner. Moreover, Designite is
open-source and can be used on cloned projects at the code
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TABLE 1: The list of code smell metrics used in the study.

Category Metrics

Architecture
Smells

Cyclic Dependency, Unstable Dependency,
Ambiguous Interface, God Component,
Feature Concentration, Scattered Functionality,
and Dense Structure

Design
Smells

Imperative Abstraction, Wide Hierarchy,
Broken-Modularization, Cyclic Hierarchy,
Hub like Modularization, Multipath Hierarchy,
Unnecessary Abstraction, Missing Hierarchy,
Multifaceted Abstraction, Feature-Envy,
Unutilized Abstraction, Rebellious-Hierarchy,
Deficient Encapsulation, Broken Hierarchy,
Unexploited Encapsulation, Insufficient-
Modularization, Cyclically Dependent-
Modularization, and Deep Hierarchy.

Implementation
Smells

Long Method, Complex Method, Long-
Parameter List, Long Identifier, Long-
Statement, Complex Conditional, Abstract-
Function Call from Constructor, Empty Catch-
Clause, Magic Number, and Missing Default.

TABLE 2: The list of author metrics used in the study and
their descriptions.

Author Metrics Description

Contribution Defines the code churn of
the developer.

Timezone Describes the primary timezone of a developer.

Experience Describes the time that a developer contributes
to a project.

Commits Defines the number of commits submitted by
a developer.

Work Time Explains the primary time of commit
submission ( e.g., 14:00).

Refactoring
Density

Describes the density of contribution toward
refactoring.

level. Therefore, we use Designite to measure code smells
at the start and end of each development stage. This helps
us evaluate the frequency and types of code smells before
and after implementing each refactoring tactic or rhythm.
Given that development activities are minimal in the early
days of a project, we use the first quartile of the early stage
as the starting point and consider it the initial quality point
for extracting code smells.

2.3 Author and Project Profiles Identification
Different teams may have different author formations
with distinct skills. Furthermore, the characteristics of the
projects, such as their size, may lead to the adoption of
different refactoring strategies. Therefore, it is essential to
identify the types of authors and projects in different stages
of development to gain insights into the adopted refactoring
tactics and rhythms. To this end, we pick a set of metrics
to explain the characteristics of the authors and projects.
Furthermore, we cluster authors and projects based on the
collected metrics and form different profiles for projects and
authors. The selected metrics are listed in Tables 2 and 3.

We collect contribution, timezone, experience, commits,
work time, contributors count, and the age of the projects by
writing a python script and traversing the commit logs. To
calculate the refactoring density, we used Rminer to obtain
the number of refactoring lines and a bash script to calculate
the total code churn (i.e., all lines of code added or deleted in
a commit). We then divided the number of refactoring lines

TABLE 3: The list of project metrics used in the study and
their descriptions.

Project Metrics Description
Files Describes the total number of files.

Comments Defines the lines of comments added to the
codebase.

Lines of Code Describes all lines of codes written in Java.

Contributors Describes the total number of known
contributors.

Timezones Defines the number of different timezones of the
developers contributing to the project.

Commits Describes the total number of commits.

Age Defines the length between the first commit
and the last commit in days.

Stars Describes the popularity of a project in terms of
stars gained.

Refactoring
Density

Describes the density of refactoring in
a repository.

by the total code churn. Moreover, we obtain information
about files, comments, and lines of code from the Cloc
tool [48] and we use GitHub API [49] to fetch stars.

Highly correlated metrics are linearly related and can be
expressed by each other. Furthermore, redundant metrics
can be derived from other metrics. Having highly correlated
or redundant metrics makes it difficult to analyze the impact
of the metrics [50]. Thus, we perform correlation analysis
and redundancy analysis to remove correlated and redun-
dant metrics.

• Correlation analysis: We find that the author and
project profile metrics do not follow a normal dis-
tribution, thus we use Spearman’s rank correlation
coefficient to find the correlation between the com-
puted metrics. A coefficient of > 0.7 represents a
high correlation [51]. For each pair of highly corre-
lated metrics, we remove one metric and keep the
other in our model. Figure 2 shows a dendrogram
representing the correlation between the project and
author metrics.

• Redundancy analysis: R-square is a measure that
shows how variance of a dependent variable can
be explained by independent variables [52]. We use
an R-squared cut-off of 0.9 to identify redundant
metrics that can be estimated from other metrics.

We measure highly correlated and redundant metrics
in the project and developer profiles metrics and exclude
them from the studied metrics. The correlation (Figure 2-
A) analysis reveals that author’s commits and experience are
highly correlated. Likewise, in project metrics, files, com-
ments, and lines of codes are highly correlated (Figure 2-B).
Hence, we remove project’s comments, project’s lines of codes,
and author’s experience. After removing highly correlated
metrics from the clustering set, we performed redundancy
analysis, but no redundant metrics were identified.

After removing the highly correlated and redundant
metrics, based on the distribution of each metric in differ-
ent quartiles, we divide them into four groups and label
them as Least, Less, More, and Most [53]. We use k-mods
clustering, an extension of the k-means [54] clustering al-
gorithm, which is suitable for clustering categorical data, to
cluster the labeled metrics and cluster them into different
profiles. We use elbow method [55] to find the optimal
number of clusters (k) and manually validate and check if
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Fig. 2: The results of the correlation analysis of author and project profile metrics.

the clustering results provide distinct centroids. The elbow
method involves plotting a graph that displays the number
of clusters versus the sum of squared errors (SSE) for each
cluster. The optimal number of clusters is identified by the
point on the graph where the SSE begins to level off and
form an elbow shape [56].

For Author profiles, we identify 3 as the optimal number
of clusters with the optimal cost value of 62,872. Therefore,
we apply k-mods with 3 clusters (k=3) and identify three
major profiles. Based on the selected metrics (i.e., timezone,
contribution, refactoring density, commits, and work time),
we label the three identified clusters as main authors, casual
contributors, and core authors. The core authors make the
most contributions while the casual contributors make the
least contributions. The main and core authors are primarily
located in America and Western Europe with commits be-
tween 12:33 to 17:06 at their local time (14:57-17:06 for main
authors and 12:33-14.57 for core authors). Casual contributors
are primarily located in North America and commit from
17:06 to 24:00 (midnight).

For the Project profiles, we find four clusters that provide
different meaningful clusters with the optimal cost value of
919,000. Hence, we apply k-mods clustering with k=4 and
identify four major profiles, namely, vibrant, maintaining,
obsolete, and growing projects. Vibrant projects have the most
commits, contributors, and stars while obsolete projects expe-
rience the least refactoring density along with less commits,
most age, and more stars. Furthermore, growing projects ex-
perience least refactorings with the least stars while having
more commits and least contributors. Moreover, maintaining
projects share least commits and contributors with the most
refactoring density. Tables 4 and 5 summarize the results of
author and project clustering.

2.4 Research Methods

This section presents the research methods applied to an-
swer the research questions.

2.4.1 Refactoring rhythms identification
To identify the refactoring rhythms of the projects, we
require a measure to describe the amount of refactoring
activities (i.e., refactoring churn) applied on each day of
the week. As the refactoring activities could be reflected by
the amount of code changes caused by refactoring, we use
the refactoring churn to quantify the amount of refactoring
activities and normalize it by the actual code churn. There-
fore, we introduce daily refactoring density (DRD), which
indicates the amount of refactoring activities deviated from

the overall development (e.g., the total code churn) of each
day of development. The DRD is calculated as below:

DRD(i) =
Refactoring churn of the day (i)

Total code churn of the day (i)
(1)

We measure the daily refactoring densities (i.e., DRD) and
compare them throughout the week. We form seven groups,
each of which represents one day of the week and contains
all refactoring activities that occurred on that particular day.
Doing so allows us to find the similarities and differences
of refactoring activities from one day to another. As our
data does not follow a normal distribution, to measure the
significance of the differences or similarities of the measured
DRDs among different days, we use the Kruskal-Wallis test,
an extension of Mann–Whitney U test [57] that evaluates if
two or more samples come within the same distribution [30].
The Kruskall-Wallis test does not assume that the data is
normally distributed or not. We use p-value > 0.05 to
decide if a test of null-hypothesis is significant [58]. The
null-hypothesis is a statistical theory that measures if a
significant relationship exists between two sets of data [59].

2.4.2 Refactoring tactics identification
Previous studies show that the majority of projects utilize
agile methodologies, which require small tasks to be fin-
ished within one week of development [58], [60]. To under-
stand the long-term refactoring activities applied by devel-
opers in the long run, we need a measure to understand the
amount of refactoring churns compared to the development
per week of the development. Hence, we propose a weekly
refactoring density WRD metric, which reflects the amount
of refactoring activities per week of development. The WRD
metric is computed using the following formula:

WRD(i) =
Refactoring churn of the week (i)

Code churn of the week (i)
(2)

For each project, we create a time series of WRDs within
every stage of development. Each data point of the time
series includes a week of development and the correspond-
ing WRD metric for that week. Accordingly, the refactoring
time series data depicts refactoring behaviors over time.
Therefore, similar refactoring time series between different
stages of the projects represent a similar refactoring habit.
The created refactoring time series share different lengths
and they vary in speed. For instance, the development
period of Project A is 10 weeks, while that of Project B is
20 weeks, indicating a variation in their length. Additionally,
Project A experiences a refactoring spike in the second week
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TABLE 4: The clusters identified by K-mods clustering to identify author profiles.

Label Timezone Contribution Refactoring Density Commits Work Time

Main Authors Less
(-5.00, 0.00]

More
(577.00, 9,848.0]

Most
(0.19, 1.00]

More
(7.0, 63.0]

More
(14:57, 17:06)

Casual Contributors Least
[-12.00, -5.00]

Least
[0.00, 23.00]

Least
[0.00, 0.00]

Least
[0, 2]

Most
(17:06, 24:00]

Core Authors Less
(-5.00, 0.00]

Most
(9,848.0, ∞)

More
(0.06, 0.19]

Most
(63.0, ∞ )

Less
(12:33, 14:57]

TABLE 5: The clusters identified by K-mods clustering to identify project profiles.

Label Files Contributors Timezones Commits Age Stars Refactoring
Density

Vibrant Most
(2157.75, ∞)

Most
(44.00, ∞)

Most
(10.75, ∞)

Most
(3,450.75, ∞)

Less
(902.77, 1,684.16]

Most
(237.25, ∞)

More
(0.15, 0.20]

Maintaining Least
[0.00, 530.75]

Least
[0.00, 15.00]

Least
[0.00, 1.00]

Least
[0.00, 951.00]

Less
(902.77, 1,684.16]

Less
(1.00, 38.00]

Most
(0.20, 1.00]

Obsolete Less
(530.75, 1,242.00]

More
[27.00, 44.00]

More
[5.00, 10.75]

Less
(951.00, 1,702.00]

Most
(2,096.51, ∞)

More
(38.00, 237.25]

Least
[0.00, 0.10]

Growing More
[1242.00, 2157.75]]

Least
(15.00, 27.00]

Least
[0.00, 1.00]

More
(1,702.00, 3,450.75]

More
(1,684.16, 2,096.51]

Least
[0.00, 1.00]

Least
(0.00, 0.10]

Before	Stage

A,er	Stage

Quality	Difference
Code	Smells	
Before	Stage

Code	Smells
A,er	Stage-

Quality	Difference	=	(Code	Smells	A8er	Stage	-	Code	Smells	Before	Stage)

Fig. 3: How changes in code smells are calculated after each
stage of development in each project.

of development, while Project B experiences the same spike
in the fifth week of development, indicating a variation in
the speed of refactoring activities. Therefore, comparing the
refactoring time series with point-to-point measures, such as
euclidean distance [61], could not overcome the limitations
of speed and length variation and could not identify similar-
ities optimally. Therefore, we use the dynamic time warping
(DTW) algorithm to measure the similarity between the
refactoring time series of project stages as refactoring tactics.
DTW overcomes the limitation of point-to-point comparisons
with the step pattern that allows transitions and weights
between two pairs [62]. Moreover, DTW is an algorithm for
calculating the similarity between two time series that vary
in speed [63].

2.4.3 Quality Changes Measurement

For identifying the relationship between the refactoring
rhythms or tactics and code quality, we need to analyze
how these refactoring rhythms or tactics reduce or increase
the frequency of each type of code smell. To do this, we
use the boundary points before and after each stage of
development. As it is shown in Figure 3, we measure the
frequency of each code smell type before and after each
stage (i.e., between two consecutive stage boundaries) and
measure the difference (reduction or increase) in each type
of code smell.

Since a larger codebase could contain more code smells,
we normalize the frequency of code smells by the lines
of code (LOC) in the codebase. Additionally, since more
code changes (i.e., larger code churn) may lead to larger
differences in code smells, we normalize the difference in
code smells by the code churn within each stage. Finally, we

calculate the differences in each type of code smell and label
it according to the identified rhythm and tactic adopted in
that stage. We utilize the frequency of code smells at the
end of each stage (ECS), the lines of code at the end of each
stage (ELC), the initial frequency of code smells in each stage
(ICS), the lines of code at the beginning of each stage (ILC),
and the total code churn of each stage (CC) to measure the
normalized differences of the total frequency of code smells
of each stage (CSD). To measure CSD at each stage (i), we
use the following equation:

CSD(i) =
(ECS(i)/ELC(i)− ICS(i)/ILC(i))

CC(i)/ELC(i)
(3)

An increase in CSD indicates an increase in the number
of code smells (i.e., decreased code quality) and a decrease
in CSD indicates an increase in the number of code smells
(i.e., increased code quality). To measure the smell difference
after utilizing each refactoring rhythm or tactic, we require
a multiple comparison method to cluster and rank the iden-
tified rhythm or tactic into statistically significant groups
and rank them based on CSD metric (i.e., changes in code
quality). Therefore, we use the Scott-Knott-ESD [31], [32] test
that uses a multiple comparison method that divides and
ranks a set of input distributions into statistically distinct
groups [32]. Scott-Knott-ESD is an extension of the Scott-
Knott [64] test with the addition of effect size difference. The
effect size examines the strength of the difference between
different groups of data [65]. Therefore, we cluster and rank
the refactoring rhythms and tactics based on the CSDs and
identify the rhythms or tactics leading to a codebase with an
increased or decreased amount of code smells.

3 RESULTS

In this section, we provide the motivation, approach, and
findings for each of our research questions.

3.1 RQ1. What are the rhythms of refactoring?
3.1.1 Motivation
In software development, developers can have various
working rhythms. For example, some developers prefer
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to work only on workdays; however, others do not mind
working even on weekends. Existing studies focus on de-
velopment rhythms and categorize development rhythms
as work-day (i.e., Monday to Friday) development and all-
day (i.e., Monday to Sunday) development [25], [26], [27].
Prior research reports that the state of getting recovered
during the weekend from working on the workdays is
correlated with an increase in weekly task performance
and personal initiative [25]. Moreover, the state of working
overtime is associated with a decrease in productivity [66].
Furthermore, previous studies have suggested that deviat-
ing from regular development to perform refactoring may
help address unhealthy code and potentially improve code
quality [28]. Inspired by prior work, our intuition is that
providing dedicated time for refactoring outside of regular
development cycles enables developers to focus more on
addressing unhealthy code through refactoring, resulting
in improved code quality. Thus, we study the refactoring
rhythms based on their deviations from the development
rhythms. Understanding the refactoring deviations from the
regular development rhythms and their relationship with
the code quality improvement can assist software teams
and developers to (1) understand the existing refactoring
rhythms and (2) adopt/apply the most effective refactoring
rhythms. In this research question, we investigate and char-
acterize different refactoring rhythms to help developers
understand the existing refactoring rhythms and identify
which one suits their needs.

3.1.2 Approach
As described in Section 2.4.1, to identify the refactoring
rhythms of the studied projects, we form seven groups and
measure DRDs on every day of development. Moreover, we
compare DRDs throughout the week to discover refactoring
rhythms using the Kruskal-Wallis test [30].

Prior studies [25], [26], [27] divide the software develop-
ment process into two groups— work-day development and
all-day development (including workdays and weekends).
To identify the refactoring rhythms adopted in different
stages and different projects, we need to compare different
days of refactoring. Hence, we group DRDs into seven
groups based on the weekdays, where each group repre-
sents a weekday and depicts the overall DRD distribution
on the corresponding day of the week. Using the Kruskal-
Wallis test, we first identify whether we can fit the majority
of the rhythms adopted from the selected project stages
into two groups, namely work-day refactoring and all-day
refactoring. To do this, we perform two individual tests
using the following hypothesis:

• H0-1: Refactoring densities are similar among all days of
the week.

• H0-2: Refactoring densities are similar among all workdays
of the week

To this end, after running the first test, we exclude
the stages of projects that have a similar distribution of
refactoring on all days of the week and perform the second
test. We accept a hypothesis if the p-value is higher than 0.05
and reject otherwise.
Clustering project and developer profiles in terms of refac-
toring activities. To understand the distribution and signifi-
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Fig. 4: Comparison of refactoring density between work-day
and all-day refactoring rhythms.

cance of the refactoring rhythms across different project and
author profiles, we rank the combinations of the different
refactoring rhythms and project or author profiles. Using
the Scott-Knott-ESD [31], [32], we group combinations of
refactoring rhythms and project or author profiles into sta-
tistically significant clusters. Specifically, we perform two
separate Scott-Knott-ESD clustering analyses: (1) for combi-
nations of project profiles and refactoring rhythms, and (2)
for combinations of author profiles and refactoring rhythms.

In the clustering method, each clustered item (i.e., a
node) represents the distribution of projects or authors that
are associated with a specific refactoring rhythm. Moreover,
each clustered item is represented by a vector of the same
length as the number of projects or authors, with each
project or author being assigned a value of 1 if it is asso-
ciated with the specific project or developer profile and the
specific refactoring rhythm, and a value of 0 otherwise. For
example, All-day-Vibrant refers to the distribution of the all-
day refactoring rhythm across all projects that fall under the
vibrant project profile. Each cluster corresponds to a statis-
tically significant distribution of the various combinations
of refactoring rhythms and project or author profiles across
the dataset. The results of the Scott-Knott-ESD test provide
insights into how refactoring rhythms are distributed across
different profiles.
Identifying refactoring rhythms characteristics. To study
the differences between refactoring operations (e.g., pull up
method) performed on weekends and those performed on
workdays, we use the Mann–Whitney U test [57] to com-
pare the distribution of each refactoring operation on the
weekend and workdays. We utilize Cliff’s Delta to measure
the effect size of the differences. We consider the operations
that obtain a p-value < 0.05 and an effect size > 0.33 [67],
indicating a medium or large magnitude of difference, as
the operations that are performed significantly differently
between the weekends and the workdays.

3.1.3 Findings
The majority (95%) of project stages follow one of the
work-day or all-day refactoring rhythms. We accept the null
hypothesis H0-1 for 84% of the project stages and the null
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Fig. 5: The different refactoring operations and the lines of
refactored code applied in weekend compared to weekdays
in all-day refactoring rhythm.

hypothesis H0-2 for 11% of the remaining project stages. For
the 5% of the project stages, both null hypotheses H0-1 and
H0-2 are rejected. Therefore, our analysis shows that only a
few project stages (i.e., 5%) do not follow any of the initial
refactoring rhythms. Specifically, we find that 11% of the
project stages perform all-day refactoring, whereas 84% of
the project stages perform the work-day refactoring rhythm.

In the work-day refactoring rhythm, we observe a signif-
icant difference in refactoring densities between workdays
and weekends, with the median refactoring densities being
higher in workdays compared to weekends, as illustrated
in Figure 4. Additionally, certain types of refactoring are
applied differently between weekends and workdays, as
shown in Figure 5-A. These types of refactoring include
move class, pull up method, pull up attribute, add attribute
annotation, extract interface, add parameter annotation, modify
parameter annotation, split attribute, move and rename attribute,
and split parameter. These refactoring actions mainly relate
to the class/method level and play a crucial role in shaping
the overall system design. Therefore, developers may prefer
to perform complex design-level refactorings on workdays,
leaving weekends for less risky modifications. We observe
that the median lines of the codes affected by the workday
refactoring types (i.e., the refactoring types that are ap-
plied more on workdays) are higher compared to weekday
refactoring types (i.e., the refactoring types that are applied
similarly during workdays and weekends) (Figure 5-B).
Therefore, developers apply more heavy-weight refactor-
ing operations that involve more code changes (e.g., move
class) during the workdays compared to the weekends.s
In contrast, in the all-day refactoring rhythm, the Kruskal-
Wallis test results demonstrate that there is no statistically
significant difference in the density of refactoring among
the different days of the week, and the median refactoring
densities are consistent across all days of the week, as
depicted in Figure 4. Additionally, we do not observe a sig-
nificant difference in the refactoring operations performed
on weekends compared to workdays. Therefore, it appears
that developers exert an equal amount of effort towards
refactoring throughout the week in the all-day rhythm.

TABLE 6: Scott-Knott-ESD test results on the refactoring
rhythms and associated project and author profiles.

Project Profiles Author Profiles
Rhythm
Profile

Cluster
Rank

Mean
(%)

Rhythm
Profile

Cluster
Rank

Mean
(%)

All-day
Maintaining 1 0.89 All-day

Core 1 0.79

All-day
Growing 1 0.83 All-day

Main 1 0.80

All-day
Vibrant 1 0.83 All-day

Casual 1 0.76

All-day
Obsolete 1 0.82 Work-day

Casual 2 0.19

Work-day
Vibrant 2 0.14 Work-day

Main 2 0.16

Work-day
Obsolete 2 0.12 Work-day

Core 2 0.15

Work-day
Growing 2 0.11

Work-day
Maintaining 3 0.06

Table 6 shows the results of the Scott-Knott test, provid-
ing further insights into the relationship between the project
and author profiles with their corresponding rhythms:

Among project profiles: In the maintaining, obsolete, growing,
and vibrant project stages, the all-day refactoring rhythm
(Cluster 1) is often used with a similar distribution than
the work-day refactoring rhythm with over 82% utilization
practice (Clusters 2 and 3). In vibrant, obsolete, and growing
project stages work-day refactoring rhythm (Cluster 2) is
more frequently used compared to the maintaining project
stages. Maintaining project stages experience the most refac-
toring density and the least number of commits (Table 3).
Moreover, in Maintaining project stages, the usage of the all-
day refactoring rhythm is highest, at 89% (Cluster 1), com-
pared to the work-day refactoring rhythm, which is 0.06%
(Cluster 3). Therefore, in maintaining project stages where
there is less development and more refactoring, developers
are likely to perform the work-day rhythm less frequently
and focus on refactoring whenever they have time. The
observation that the distribution of the work-day refactoring
rhythm is similar in vibrant, obsolete, and growing projects
(Cluster 2), and the distribution of the all-day rhythm is also
similar in these project stages (Cluster 1), indicates that the
project profile does not have a significant impact on the
choice of refactoring rhythm in vibrant, obsolete, and growing
project stages.

Among author profiles: Core, main, and casual authors often
utilize the all-day refactoring rhythm with a similar distri-
bution (Cluster 1). Moreover, the distribution of the work-
day rhythm is similar in all author profiles (i.e., core, main,
and casual) (Cluster 2). Since the distribution of different
author profiles in all-day and work-day rhythms separately
are similar, the choice of specific refactoring rhythm is
not influenced by the type of developer. Therefore, it is
likely that authors choose different rhythms based on their
preferences.
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Software projects follow two major refactoring rhythms:
work-day and all-day refactoring. The work-day refactoring
rhythm tends to have higher densities of refactoring to the
code base from Monday to Friday. In the all-day refactoring
rhythm, there is no significant difference in refactoring ac-
tivities on different days of the week. In maintaining project
stages, the all-day refactoring rhythm is more prevalent
compared to other project stages. The choice of refactoring
rhythms (all-day or work-day) is not influenced by the type
of authors.

3.2 RQ2: What are the most frequent refactoring tactics
used in projects?

3.2.1 Motivation
Previous studies have only classified refactoring tactics as
either floss or root canal [1], [28], [29]. Floss refactoring is
distinguished by frequent refactoring along with the devel-
opment process. On the other hand, root canal refactoring is
identified by occasional refactoring aside from the develop-
ment process. While the terms floss and root canal tactics have
been useful in understanding the general patterns of refac-
toring, there may be other potential refactoring tactics that
have not yet been identified. Moreover, understanding the
distinctive features of each refactoring tactic can offer valu-
able insights into developers’ decision-making processes
when choosing a particular tactic. Additionally, recognizing
various refactoring tactics can establish a common vocabu-
lary for describing them, facilitating communication among
practitioners. This, in turn, helps developers comprehend
the refactoring tactics they use and choose or switch to the
most appropriate tactic for their project. In this research
question, by considering different stages of development
in different projects, we investigate whether there are more
refactoring tactics other than floss and root canal.

3.2.2 Approach
As described in Section 2.4.2, to understand the refactoring
tactics in the studied projects, we first cluster refactoring
time series of the project stages (i.e., in terms of WRD). Using
the DTW algorithm, we measure the similarity between the
WRD time series of each pair of project stages as part of the
clustering process.
Clustering common refactoring practices. To identify refac-
toring tactics, we utilize WRD and form a time series that
represent the refactoring history of each project. Subse-
quently, using DTW we cluster the projects based on the
similarities of their refactoring activities represented by the
time series. As the selected projects do not share a similar
life cycle and they may experience different refactoring
practices in different stages of development, we measure
the similarities of refactoring activities between projects in
different stages of development (i.e., early, middle, late).
Therefore, if a project has multiple development stages, we
break its time series into multiple smaller time series, each
of which represents one stage of the project.

We use Dynamic Time Warping (DTW), a clustering
technique for temporal sequences based on their similarity,
to cluster refactoring time series as refactoring tactics. We
identify the optimal number of clusters using the elbow
method [55]. The elbow method measures the sum of

K=4

Fig. 6: The results of the elbow curve, showing the optimal
number of clusters using DTW.

squared errors (SSE) and selects the smallest value of k (i.e.,
the number of clusters) with the lowest SSE as the optimal
number of clusters. This is determined by identifying the
point on the graph where the SSE begins to level off and
form an elbow shape [56]. Moreover, we manually validate
the optimal number of clusters (k) identified by the elbow
method and check if our clustering results provide distinct
centroids. Based on the elbow curve analysis depicted in
Figure 6, four is identified as the optimal number of clusters.
Furthermore, we utilize the silhouette score with the exist-
ing criteria [68], [69], [70], [71], [72] of the silhouette method
to verify the optimal number of clusters. This identification
is based on two conditions: (1) average silhouette score
greater than 0.5 and (2) absence of clusters exhibiting all
silhouette scores below the average. The silhouette score
analysis points towards the optimal cluster numbers being
3 and 4, yielding average silhouette scores of 0.56 and 0.52,
respectively. All clusters in both cases exhibit scores above
the average threshold. This observation supports the idea
that both 3 and 4 clusters could be considered as optimal
solutions. However, as k=4 leads to a more even distribution
of the sizes (i.e., thicknesses) of the clusters [68], we opt for
k=4. In summary, both the elbow curve and silhouette score
analyses suggest that 4 clusters are the preferred number of
clusters.

We utilize DTW to identify the similarities of refactoring
time series by analyzing all stages of development in all
projects together. Analyzing all stages together at the same
time allows us to compare and identify the unified common
behaviors in all stages of development despite their different
life spans. By considering the optimal number of clusters
as four and performing DTW, we identify four common
behaviors based on the cluster centroids to represent the
common tactics as variations of the root canal and floss
refactoring tactics.

Identifying refactoring spikes. To provide more insights
on the identified tactics, we measure the number of spikes
that happen in each refactoring tactic centroid. Our intuition
is that a higher number of spikes within a refactoring tactic
time series indicates more deviation of refactoring densities
from regular refactoring densities. To determine a spike
we apply the Median Absolute Deviation (MAD) method.
Compared to the standard deviation, MAD is a robust esti-
mator of scale. MAD can also be used as a scaling quantity
instead of the standard deviation, which is vulnerable to
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Fig. 7: The relationship between development weeks per-
centiles and refactoring density.

the influence of extreme values [73], [74]. MAD can be
calculated using the formula below where n is each data
point and ñ is the median of all data points in a window:

MAD = median (|n−median(ñ)|) (4)

Therefore, to detect refactoring spikes, we iterate through
the data points in our centroid time series within a window
of four weeks (one month) before and after a given index,
which represents a week of development. For each window,
we calculate the median absolute deviation (MAD). Then,
we check if the absolute deviation of the data point at the
current index from the median of the window is greater
than three times the MAD [75]. If the condition is true, we
consider it a refactoring spike.
Clustering refactoring tactics in terms of project and de-
veloper profiles. Using a similar approach to Section 3.1.2,
we use the Scott-Knott-ESD [31], [32] to cluster the distri-
bution of the project and author profiles associated with
the refactoring tactics into statistically significant groups.
We perform two separate clusterings for (1) for combi-
nations of project profiles and refactoring tactics, and (2)
for combinations of author profiles and refactoring tactics.
Each cluster represents the distribution of project or author
profiles in project stages corresponding to the identified
tactic. For example, RC-Vibrant indicates the distribution of
the root canal tactic across vibrant project stages. Hence, each
group represents a statistically significant distribution of the
project or author profiles associated with the refactoring
tactics. The results of the Scott-Knott-ESD test reveal more
insights into the identified refactoring tactics.

3.2.3 Findings
Our clustering approach uncovers four primary refactoring
tactics. We define the intermittent spiked floss and the fre-
quent spiked floss as two variations of the floss refactoring
tactic, and the intermittent root canal and the frequent
root canal as two variations of the root-canal refactoring
tactic. The behavior (i.e., changes in refactoring density
over time) of refactoring tactics is illustrated in Figure 8.
The main difference between the floss-based and root canal-
based tactics is that: floss-based tactics mix refactoring with

TABLE 7: Summary of the number of refactoring spikes for
each refactoring tactic centroid.

Floss Root Canal
Intermittent
Spiked

Frequent
Spiked Intermittent Frequent

Spikes
Count 35 59 35 66

regular development activities (i.e., the refactoring densities
are consistently higher than zero, as indicated in Figure 8
(B and C)); in comparison, root canal-based tactics involve
refactoring activities once in a while (i.e., the refactoring
densities are at or near zero for most of the time periods,
as indicated in Figure 8 (A and D). Additionally, Figure 7
shows the refactoring density percentiles of root canal-
based and floss-based tactics. As is shown root canal-based
tactics have zero refactoring densities for more than half of
the development cycle. Specifically, intermittent root canal
have zero refactoring density until the 74th percentile of
development weeks (i.e., more than 74% of the weeks have
zero refactoring densities), and frequent root canal have zero
refactoring until the 52nd percentile (i.e., more than 52% of
the weeks have zero refactoring densities). In contrast, floss-
based tactics have a non-zero median at all percentile points.
Moreover, frequent root canal and frequent floss tend to have
more frequent high-density periods than intermittent spiked
floss and intermittent root canal. Furthermore, as it is shown
in Table 7, by comparing refactoring spikes count in each
tactic, we find that intermittent spiked floss has fewer spikes
(35) compared to frequent spiked floss (59). Similarly, frequent
root canal has more spikes (66) compared to intermittent root
canal, which has 35 spikes. Overall, the frequent root canal
and frequent spiked floss tactics exhibit more frequent high-
density periods (i.e., refactoring spikes) than the intermittent
root canal and intermittent spiked floss tactics. We define each
refactoring tactic as follows:

• Intermittent spiked floss: with refactoring consis-
tently in all development weeks, developers perform
refactoring on a regular basis along with fewer refac-
toring spikes compared to frequent spiked floss.

• Frequent spiked floss: with refactoring consistently
in all development weeks, developers perform refac-
toring with more drops and increases (i.e., spikes)
in refactoring density compared to intermittent spiked
floss.

• Intermittent root canal: with the majority of the
weeks having zero refactoring densities, developers
tend to perform refactoring irregularly but in high
densities when they do perform it.

• Frequent root canal: with the majority of the weeks
having zero refactoring densities, developers tend to
perform more frequent refactorings with more spikes
in refactoring density compared to intermittent root
canal.

Software projects undergo different refactoring tactics
during their lifetime. Table 8 shows the distribution of
the identified tactics in different stages of development. In
particular, in the early stage of development, the majority of
refactoring tactics are floss-based (55%). This observation is
aligned with the previous studies showing that the majority
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Fig. 8: Clustering centroids that represent refactoring tactics identified in this study, which are labeled as: intermittent root
canal, intermittent spiked floss, frequent spiked floss, and frequent root canal. The red dots show refactoring spikes in each tactic.

TABLE 8: The distribution of refactoring tactics in different
stages of development

Floss Root Canal
Intermittent
Spiked

Frequent
Spiked Intermittent Frequent

Early 3% 52% 19% 26%
Middle 35% 12% 41% 12%
Late 21% 0% 78% 1%

of refactoring tactics are floss-based refactoring [76], [77].
However, in the middle stage, the utilization of floss-based
tactics drops to 47%. Finally, in the late stage of develop-
ment, the majority of refactorings are observed to be root
canal-based tactics (79%). Therefore, the amount of floss-
based refactoring tactics reduce while the projects enter
their later stages of development: the developers aim for
more targeted refactoring operations as the projects grow
over time. Table 9 shows the results of the Scott-Knott-ESD
test, which reveals more information on the distribution
of refactoring tactics associated with different project and
author profiles:
Among project profiles: In maintaining project stages, in-
termittent root canal (cluster 1) is frequently used (60%).
While, in vibrant project stages, floss-based tactics (frequent
spiked floss and intermittent spiked floss) (cluster 2) are more
frequently used (79%). Moreover, the obsolete project stages
mainly use intermittent root canal (cluster 2) and growing
project stages (cluster 2) utilize frequent spiked floss and
intermittent root canal as the main refactoring tactics. As
Vibrant project stages have more and most contributors
and commits, they have more active development activities;
thus they are more likely to experience frequent refactoring
during the development process (i.e., floss-based tactics).
However, maintaining and obsolete project stages with the
least contributors try to maintain the code and keep it
working by doing targeted refactoring from time to time.
Among author profiles: casual developers mainly do
floss-based refactoring tactics (cluster 1 and 2) (i.e., frequent
spiked floss and intermittent spiked floss), while main authors
often utilize frequent spiked floss (cluster 1). Moreover, core
authors utilize both frequent spiked floss and intermittent
root canal (cluster 2). As core authors have the most and
more contributions to the repository, they are more likely to
contribute more to critical refactoring activities; therefore,
they are more likely to do root canal-based refactoring,
while letting casual contributors perform floss-based
refactoring during the development process.

TABLE 9: Scott-Knott-ESD test results on the refactoring
tactics and associated project and author profiles.

Project Profiles Author Profiles
Tactic
Profile

Cluster
Rank

Mean
(%)

Tactic
Profile

Cluster
Rank

Mean
(%)

IR-Maintaining 1 0.60 FF-Casual 1 0.47
IR-Obsolet 2 0.42 FF-Main 1 0.42
FF-Growing 2 0.42 FF-Core 2 0.35
FF-Vibrant 2 0.41 IR-Core 2 0.31
IR-Growing 2 0.39 IF-Casual 2 0.30
IF-Vibrant 2 0.38 IF-Main 3 0.25
FF-Obsolete 3 0.30 IR-Main 3 0.24
FR-Maintaining 4 0.25 IR-Casual 4 0.19
FR-Obsolete 4 0.19 IF-Core 4 0.18
IR-Vibrant 4 0.18 FR-Core 4 0.16
FR-Growin 5 0.11 FR-Main 5 0.09
FF-Maintaining 5 0.09 FR-Casual 6 0.04
IF-Obsolete 5 0.09
IF-Growing 5 0.08
IF-Maintaining 6 0.06
FR-Vibrant 6 0.03
IR: intermittent root canal, IF: intermittent spiked floss, FF: frequent spiked floss,
FR: frequent root canal

Apart from floss and root canal refactoring tactics, software
developers use more diverse refactoring tactics, such as
intermittent root canal, intermittent spiked floss, frequent spiked
floss, and frequent root canal. Among project stages catego-
rized as obsolete or maintaining, root canal-based tactics are
prevalent, whereas floss-based tactics are more commonly
employed in vibrant stages. Additionally, core authors tend
to use more root canal-based tactics, whereas casual contrib-
utors are inclined towards floss-based tactics.

3.3 RQ3: What is the relationship of different refactor-
ing rhythms and tactics with code quality?

3.3.1 Motivation
In the first and second research questions, we identify dif-
ferent refactoring tactics and rhythms applied by different
projects. Apart from finding different tactics and rhythms,
identifying the relationship between refactoring tactics and
code quality is crucial as it helps developers prioritize their
efforts, improve development processes, and deliver high-
quality software. Therefore, we utilize code smells as quality
metrics for refactoring [13], [16] to compare the changes in
quality after adopting each tactic or rhythm. Understand-
ing the relationship of different rhythms and tactics with
code quality can help practitioners and project teams to (1)
discover the positive and negative aspects of the different
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refactoring rhythms or tactics, and (2) adopt or switch to the
most suitable refactoring rhythm or tactic.

3.3.2 Approach
To understand the relationship of the identified refactoring
rhythms and tactics with code quality, we utilize code smells
listed in Table 1 as code quality metrics. Using Scott-Knott-
ESD test [31], [32], we cluster the magnitude of code smell
changes (i.e., increase/decrease) after adopting each tactic or
rhythm. The Scott-Knott-ESD complements the Scott-Knott
test [64] by taking the effect size difference into account
when identifying different clusters. We first identify the
relationship between the identified (1) refactoring tactics
and (2) refactoring rhythms with overall increase or decrease
in code smells as quality measures. Moreover, we identify
the relationship of each refactoring tactic and rhythm with
different types of code smells. We describe our detailed
approach below.
Measuring code smell changes. As discussed in Section 2,
to measure the relationship of the identified refactoring
rhythms and tactics with code quality, we use code smells.
We set three stages (early, middle, and late) for the lifetime
of projects and then collect the code smell metrics, which
are normalized by the project size, at the beginning and the
end of each stage respectively.
The relationship of refactoring rhythms and tactics with
the overall code quality. In Section 3.1, we classify refactor-
ing rhythms as all-day and work-day. Besides, in Section 3.2,
we identify four major refactoring tactics: intermittent root
canal, intermittent spiked floss, frequent spiked floss, and frequent
root canal. To identify the relationship between the above
refactoring rhythms and tactics with code quality, we utilize
the normalized frequency of code smell changes after adopt-
ing each rhythm and tactic (listed in Table 1). Therefore, a
higher frequency of changes indicates an increase in code
smells and a decrease in software quality. To analyze the
overall relationship of refactoring tactics and rhythms with
the frequency of code smell changes, we use the normalized
sum of all code smell changes as the overall changes in
code smells and label them with the corresponding rhythm
and tactic. Using the Scott-Knott-ESD test we cluster and
rank the refactoring rhythms and tactics based on the code
smell changes to identify the rhythms and tactics leading to
more smelly code. We use p− values < 0.05 to identify the
statistical significance and use means to rank the identified
clusters.
The relationship of refactoring rhythms and tactics with
each code smell type. To provide more insights and details
on the identified rhythms and tactics, we conduct separate
analyses to assess the relationship between the frequency of
different types of code smells and each refactoring rhythm
and tactic. We use 35 code smells (listed in Table 1) and
the changes after adopting each rhythm and tactic. To
this end, we utilize the Scott-Knott-ESD test to cluster
(p − values < 0.05 as the significance threshold) and rank
(using means) the rhythms and tactics based on each type of
code smells separately. Therefore, we perform 35 individual
tests for rhythms and 35 separate tests for tactics. Therefore,
each Scott-Knott-ESD test is responsible for one type of code
smells. Doing so allows us to identify how the refactoring
rhythms and tactics impact each type of code smells.

TABLE 10: Scott-Knott-ESD test results on the overall
changes in the frequency of code smells associated with the
refactoring tactics.

Floss Root Canal
Intermittent
Spiked

Frequent
Spiked Intermittent Frequent

Cluster
Rank 1 2 3 3

Mean 0.198276 0.012329 -0.025959 -0.029701

TABLE 11: Scott-Knott-ESD test results on the overall
changes in the frequency of code smells associated with the
refactoring rhythms.

All Day Work Day
Cluster Rank 1 1
Mean 0.01352 0.01991

3.3.3 Findings

In this section, we provide the findings on the relationship
of both refactoring rhythms and tactics with code quality.
Overall relationship: We use the sum of all types of code
smell changes (i.e., the total number of code smell changes
regardless of the code smell type) to measure the overall
code smell changes after adopting each refactoring rhythm
and tactic. As the results suggest, the identified rhythms
belong to the same cluster and do not significantly affect
overall changes in the number of code smells (Table 11),
however, the all-day refactoring rhythm is associated with
the lowest mean in overall code smell changes, which in-
dicates a higher code quality. Overall, refactoring rhythms
are not statistically associated with the overall changes in
the code smells. For refactoring tactics, on the other hand,
intermittent spiked floss and frequent spiked floss are in the first
and second ranked clusters, hence, they are associated with
more increase in the overall changes of code smells com-
pared to the frequent root canal and the intermittent root canal
tactics. In fact, on average, floss-based tactics are associated
with an increase in the frequency of code smells (positive
mean as shown in Table 10), while root canal-based tactics
are associated with a decrease in the frequency of code
smells (negative mean as shown in Table 10). Therefore,
root canal-based tactics (i.e., frequent root canal and inter-
mittent root canal) are associated with a higher code quality
compared to floss-based tactics. A possible explanation may
be that floss-based refactoring is typically integrated with
addressing daily maintenance tasks, such as bug fixes and
the implementation of new features, while root canal-based
refactoring focuses on improving the overall quality of the
design.
Relationship with specific code smells: The results from
our analysis of the overall changes in the number of code
smells show a significant difference in the code smell
changes between the floss-based and the root canal-based
tactics. However, rhythms do not show a significant
difference in the changes in the frequency of code smells.
Therefore, we cluster the frequency of code smell changes in
each code smell type after adopting each refactoring tactic
separately. Figure 9 shows the results of the individual
Scott-Knott tests applied for each type of code smell.
We observe that, for 6% (2 out of 35 code smell types),
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Code Smell Code Smell Code Smell
Cyclic Dependency IF(1) FF(2) IR(3) FR(3) Deficient Encapsulation IF(1) FF(2) IR(3) FR(3) Wide Hierarchy IF(1) FF(2) IR(3) FR(3)
God Component IF(1) FF(2) IR(3) FR(3) Unexploited Encapsulation IF(1) FF(2) FR(3) IR(3) Abstract Function Call from Constructor IF(1) FF(2) FR(3) IR(3)
Ambiguous Interface FF(1) FR(1) IF(1) IR(2) Broken Modularization FF(1) IF(1) FR(2) IR(2) Complex Conditional IF(1) FF(2) FR(3) IR(3)
Feature Concentration IF(1) FF(2) FR(3) IR(3) Cyclically Dependent Modularization IF(1) FF(2) IR(3) FR(3) Complex Method IF(1) FF(2) IR(3) FR(3)
Unstable Dependency IF(1) FF(2) IR(3) FR(3) Hub-like Modularization IF(1) FF(2) IR(3) FR(3) Empty Catch Clause IF(1) FF(1) FR(1) IR(1)
Scattered Functionality IR(1) IF(1) FF(1) FR(1) Insufficient Modularization IF(1) FF(2) IR(3) FR(3) Long Identifier IF(1) FF(2) IR(3) FR(4)
Dense Structure IF(1) FF(2) IR(2) FR(2) Broken Hierarchy IF(1) FF(2) FR(3) IR(3) Long Method IF(1) FF(2) IR(3) FR(3)
Imperative Abstraction IF(1) FR(2) FF(2) IR(3) Cyclic Hierarchy IF(1) FF(2) IR(3) FR(3) Long Parameter List IF(1) FF(2) IR(3) FR(3)
Multifaceted Abstraction IF(1) FR(1) FF(1) IR(1) Deep Hierarchy FF(1) IF(1) IR(2) FR(2) Long Statement IF(1) FF(2) FR(3) IR(3)
Unnecessary Abstraction IF(1) FF(1) FR(1) IR(2) Missing Hierarchy IF(1) FF(2) FR(3) IR(3) Magic Number IF(1) FF(2) IR(3) FR(3)
Unutilized Abstraction IF(1) FF(1) FR(2) IR(2) Multipath Hierarchy IF(1) FF(1) IR(2) FR(3) Missing Default IF(1) FF(2) IR(3) FR(3)
Feature Envy IF(1) FF(1) FR(2) IR(2) Rebellious Hierarchy FF(1) IF(2) IR(3) FR(3) Overall IF(1) FF(2) IR(3) FR(3)

Clusters Clusters Clusters

Intermi(ent	Spiked	Floss Frequent	Spiked	Floss Intermi(ent	Root	Canal Frequent	Root	Canal

Fig. 9: Results from the Scott-Knott-ESD tests that cluster and rank the refactoring tactics for overall and different types of
code smell changes. A higher rank indicates a larger increase (or smaller decrease) in code smells.

namely empty catch clause and multifaceted abstraction,
the different refactoring tactics are not associated with a
statistically significant difference in the frequency of the
corresponding code smell. This was determined through
the Scott-Knott-ESD tests resulting in a single cluster.
However, root canal-based tactics result in statistically
smaller increases in the frequency of code smells, indicating
higher quality, for 80% (28 out of 35) of code smell types.
This includes 90% of the implementation smell types (9 out
of 10 types), 83% of the design smell types (15 out of 17
types), and 57% of the architecture smell types (4 out of 7
types). The five remaining code smell types (i.e., ambiguous
interface, scattered functionality, dense structure, imperative
abstraction, and unnecessary abstraction) show slightly
different clustering results (Figure 9) from the majority of
the code smells (74%). Therefore, adopting root canal-based
tactics results in the majority of improvements in code
smells across all three categories (i.e., implementation,
design, and architecture smells) of code smells. Overall, our
results suggest that more dedicated refactoring efforts (i.e.,
using root canal-based tactics) can better help remove or fix
most types of code smells.

Root canal-based tactics are associated with a greater de-
crease (or smaller increase) in the number of code smells,
and thus higher code quality, compared to floss-based tac-
tics, which suggests more dedicated refactoring operations.
However, refactoring rhythms are not associated with the
changes in the number of code smells, suggesting that the
choice of rhythm may be driven more by project-specific
factors and team preferences rather than their impact on
code quality.

4 THREATS TO VALIDITY

In this section, we discuss the possible threats to the validity
of our study.
Internal validity. Concerning our project selection and
selected approaches, in the second research question, for
clustering refactoring time series and finding refactoring
tactics, we analyze the refactoring densities in three stages
of development. We choose the mentioned time frames so
that we could compare the refactoring behaviors of the
project stages with similar length of development history.
We admit having more projects with different lengths of
time frames could reveal more refactoring tactics. Moreover,

due to the varying lengths of the life cycles of projects in
stages after the late refactoring stage, time series clustering
could not be applied, and we had to exclude them from our
study. Thus, it is possible that some patterns may emerge in
later stages that we were unable to capture. In the second
research question, We have categorized the data into four
distinct clusters, namely intermittent root canal, intermittent
spiked floss, frequent spiked floss, and frequent root canal. The
number of clusters chosen may impact the quality and
comprehensibility of the clustering outcomes, as well as the
insights and conclusions derived from them. If there are too
many clusters, it may result in overfitting, whereas if there
are too few, important information may be lost. To avoid
bias, we use the elbow method [55], silhouette score [72],
and manual inspection to identify the optimum number
of clusters. However, different numbers of clusters could
reveal less or more refactoring tactics. In the third research
question, we use code smells as a code quality measure
to study the relationship between refactoring rhythms or
tactics with code quality. Nevertheless, we agree that code
quality can be characterized by other measures, such as
the number of bugs or maintenance costs. Furthermore,
we admit that other socio-technical metrics, such as the
way refactoring is applied (e.g., manually or automatically)
and regulations of the development team could affect our
code quality measurement. Future work that explores the
relationship between refactoring activities and other charac-
teristics of code quality could complement our results.

External validity. Concerning the generalization of our find-
ings, our experiments and results are based solely on the
analysis of the 196 Apache projects we studied, and there-
fore, our conclusions may not necessarily apply to other
projects, such as those in different domains. Additionally,
since our analysis was limited to projects written in Java,
the findings may not be applicable to projects written in
other programming languages.

Construct validity. Concerning our measurement accuracy,
in the third research question, to study the relationship be-
tween refactoring rhythms and code quality (i.e., in terms of
the frequency of code smell changes), we measure the code
smells in different stages of the projects, because calculating
code smells every week takes approximately 25 days for
each project, and computing them for all projects requires a
significant amount of time. Nevertheless, extracting quality
changes every week could provide more accurate results.
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5 IMPLICATIONS

In this section, based on the results of our study, we provide
implications for practitioners, developers, and tool builders
to improve their understanding of different refactoring
rhythms and tactics.
Our findings help practitioners understand the patterns
of refactoring activities and their impact on code qual-
ity, which can help practitioners make more informed
decisions in their refactoring adoption. In this study, we
identify the deviations of code refactoring from the regular
development rhythms and measure how different refactor-
ing rhythms and tactics are associated with the increase or
decrease in code quality. Our findings can help practition-
ers understand practical refactoring rhythms and tactics in
different real-world projects and observe their relationship
with code quality. Hence, practitioners can leverage our
findings to (1) understand the refactoring rhythms or tactics
that they use and the impact on code quality, and (2) adopt
or apply the most effective refactoring rhythms or tactics for
their projects.
Refactoring rhythms do not have a significant impact on
code quality. In this study, we observe two dominant refac-
toring rhythms as all-day and work-day refactoring rhythms.
By measuring the code smell changes after adopting each
rhythm, we don’t observe significant differences in the code
quality after applying either work-day or all-day rhythms.
Therefore, we recommend that practitioners choose a refac-
toring rhythm that aligns with their project objectives and
milestones, whether work-day or all-day rhythm. Considera-
tions such as the size of the contribution and the developers’
comfort could be taken into account when making this
decision.
Different refactoring tactics have different impacts on
code quality: root canal-based refactoring is more likely
than floss-based refactoring to be associated with better
code quality. As shown in our results, the two root canal-
based tactics are ranked in the first place in terms of the
overall frequency of code smell reduction, more specifically
for 28 out of 35 types of code smell types. Root canal-
based tactics lead to an average decrease in the frequency
of code smells while floss-based tactics lead to an average
increase in the frequency of code smells. Hence, root canal-
based tactics outperform floss-based tactics by reducing
the total amount of code smells. Therefore, we encourage
practitioners to apply higher-level refactorings once in a
while to keep the code maintainable with less code smells.
Establishing a common vocabulary for describing vari-
ous refactoring rhythms and tactics can help improve
communication among practitioners, developers, project
managers, and other stakeholders. This work formulated
several common patterns of refactoring rhythms and tactics.
Such common patterns (or common vocabulary) facilitate
communication among practitioners, enabling them to iden-
tify and implement effective refactoring patterns and tech-
niques. By gaining a better understanding of the existing
refactoring patterns, team members can communicate more
effectively with each other and with stakeholders. This is
especially useful in large and complex projects where there
may be multiple teams and stakeholders involved.

Future research that performs empirical studies on refac-
toring should be aware of different refactoring tactics
adopted in their studied projects. Our study reveals a
distinction in the adoption of floss or root canal-based refac-
toring over the long term and their different impact on code
quality. We strongly recommend researchers consider differ-
ent types of refactoring tactics for the project selection when
they investigate refactoring evolution, practices, and their
impact on software quality. Opting for projects exclusively
aligned with floss-based or root canal-based approaches
could substantially influence or bias the outcomes of their
studies. On the other hand, we recommend researchers dis-
tinguish the projects that adopt different refactoring tactics
when they study the characteristics of refactoring in these
projects.
Our findings promote the adoption of root canal-based
refactorings in the development process instead of solely
relying on floss-based refactoring. In fact, a large portion
(42%) of our studied projects only perform floss-based
refactoring. Our research underscores the importance of
incorporating root canal-based refactoring as a means to
minimize code smells. Consequently, we advocate for devel-
opers to move beyond solely relying on ad hoc refactoring
during development (i.e., floss-based). Instead, we propose
the inclusion of dedicated refactoring tasks within the devel-
opment timeline. While this approach may necessitate addi-
tional time investment, it proves beneficial for developers to
conduct long-term maintenance tasks on code quality.

6 RELATED WORK

In this section, we review the literature related to refactoring
rhythms, tactics, and studies related to refactoring detection.
Working rhythms. Zhang et al. [26] conduct a survey study
on developers for working overtime. The authors find that
working overtime is a common behavior among software
practitioners. Developers who work more often on week-
ends believe that working overtime could increase their
productivity. Similarly, Claes et al. [27] study the frequency
of the commit messages on 86 open-source projects and
find that one-third of developers work overtime either at
night or during the weekends. In terms of researchers,
Wang et al. [78] study the download information of scientific
papers and find that many researchers work on weekends.
However, the amount of overtime work differs among
countries. Binnewies et al. [25] conducts a survey study on
133 employees and shows that psychological detachment,
relaxation, and mastery experiences during the weekend
are associated with being recovered for the upcoming week.
Being recovered affects the weekly task performance, per-
sonal initiative, organizational citizenship behavior, and low
perceived effort. To summarize, most of the prior work has
been conducted to find different working rhythms during
the week and correlate them with productivity. However,
there is no study related to the refactoring rhythms and
their relationship with code quality. Our goal is to identify
various refactoring rhythms employed by developers and
determine which rhythms are positively associated with
higher code quality.
Refactoring tactics. Floss and root canal are two refactoring
tactics identified in previous studies [1], [28]. Floss refactor-
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ing is distinguished by frequent refactoring, blended with
the software development process, while the root canal is
identified by occasional periods of refactoring which is not
consistent with the software development process. Liu et
al. [76] investigate refactoring histories on data collected
from 753,367 engineers and suggest that between floss and
root canal, the most frequently adopted refactoring tactic by
engineers is floss. Sousa et al. [29] classify refactoring as floss
and root canal and conduct a study on software projects to
examine refactoring opportunities indicated by code smells.
In this study, we identify new variations of refactoring
tactics in addition to the previously mentioned tactics.
Moreover, we study their relationship with code quality
in terms of code smells.
Refactoring detection. Several tools and approaches are
introduced to automatically identify refactoring opera-
tions [38], [79]. The main idea behind these approaches is to
compare different versions of the code fragments stored in a
version control system and point out refactoring operations.
These tools can help us study refactoring activities on a large
scale in the software maintenance process. Kim et al. [79]
introduce Ref-Finder, which takes two versions of a program
as input from workspace snapshots or subversion of a repos-
itory and extracts logical facts about the syntactic structure
of a program. Nevertheless, Soares et al. [80] conducts a
study and show that Ref-Finder has low precision and
recall which leads to false-positive results, which means it is
inaccurate in detecting refactorings. However, Tsantalis et
al. [38] design a tool, Rminer, that overcomes the above
constraints. Similarly to Ref-Finder [79], Rminer [14], [38]
takes two revisions of source code from the commit history
in the version control system of a Java project and returns a
list of refactoring operations applied between two versions.
Using a similar approach, Alizadeh et al. [81] introduce a bot
integrated into a version control system that monitors soft-
ware repositories and identifies refactoring opportunities by
analyzing recently changed files through pull requests. It
then finds the best series of refactorings to fix the quality
issues. In this work, we employ the refactoring detec-
tion approach Rminer, which was developed in previous
research [14], to extract refactoring operations from our
dataset. We also validate its effectiveness in our context.
Refactoring and code quality. Prior work has performed
studies regarding the relationship between refactoring and
code quality. Almogahed et al. [82] examine the studies that
identify the impacts of code refactoring on software quality.
It identifies that researchers agree that refactoring has a pos-
itive impact on both internal and external quality attributes.
Moreover, Lacerda et al. [83] conduct a literature review
on refactoring tools and common code smells to measure
the relationship between refactoring operations and code
smells. By analyzing the initial and final code smells after
refactoring, the study finds that a significant proportion
of code smells get eliminated after performing refactoring,
which in turn preserves or enhances software quality during
the maintenance process. Moreover, it notices that code
smells and refactoring are linked by quality attributes and
quality attributes that affect code smells are the same ones
that affect refactoring. Bibiano et al. [17] correlate and study
the effect of batch refactoring on code smells. It identifies
that there is usually more than one refactoring operation

required to eliminate the code smells. Cinn’eide et al. [9]
conduct a survey study on the benefits of refactoring and
argue that, although refactoring is commonly believed to
aim at removing code smells, developers are not strongly
motivated by the desire to eliminate them. Murphy et al. [28]
define two refactoring tactics, floss and root canal, using a
dental metaphor. Floss involves frequent refactoring with
other program changes, while root canal involves infre-
quent, longer periods of refactoring with few other program
changes. Murphy et al. propose five principles and evaluate
tools for alignment with floss tactics. Murphy et al. find
that the tools are not aligned with floss tactics and are
therefore not suitable for floss refactoring. It suggests that
floss refactoring is likely to result in higher quality and
lower costs in the long run. However, it does not propose
a quantitative approach to measure this claim. Previous
studies [12], [13], [14], [15], [16], [17] link refactoring with
code smells and code quality which makes code smells a
good quality indicator of code after performing refactoring
operations. Therefore, we use code smells to measure the
relationship between the identified rhythms and tactics with
code quality. Different from the existing studies, our work
is the first to quantitatively study the relationship between
refactoring rhythms/tactics and code quality.

7 CONCLUSION

In this study, we investigate the refactoring activities on
a dataset consisting of 196 Apache projects to identify
refactoring tactics and rhythms that developers and projects
adopt in the software development process. We also
examine their relationship with code quality in terms of
code smells. Comparing both refactoring and development
activities, we first determine that in more than 95% of
project stages developers use a systematic refactoring
rhythm on weekdays. Two major rhythms are identified
as 1) work-day refactoring and (2) all-day refactoring. By
considering the relationship between refactoring rhythms
and the quality metrics (i.e., code smells), we observe that
different refactoring rhythms do not make a statistically
significant difference to the code quality. Moreover, by
clustering the life-cycle of refactoring activities we find
four variations of existing refactoring tactics: (1) frequent
spiked floss, (2) intermittent spiked floss, (3) frequent root
canal, and (4) intermittent root canal refactoring tactics. We
observe that root canal-based tactics (frequent root canal and
intermittent root canal) are associated with a larger reduction
in the frequency of code smells compared to floss-based
tactics (frequent spiked floss and intermittent spiked floss). Our
findings can help researchers and practitioners understand
practical refactoring activities in real-world projects and
their relationship with code quality. Practitioners can
leverage our findings to choose the appropriate refactoring
patterns for their projects based on their resources and code
quality requirements. For future work, we plan to conduct
experiments for other programming languages and focus
more on automatic vs. manual refactoring operations.
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